
TinyNet: 
A Lightweight Networking Strategy for Networked Control Systems

6.829 Computer Networks
Jake Read, Nick Selby, Dougie Kogut, Patrick Wahl



Networked Control Systems

Common in Manufacturing, Robotics, Avionics, etc
 - Relative systems level complexity as researchers discover advantages of ‘many small’ rather than ‘a few large’ actuators, etc

NCS: Performing control on physical systems 
 - Sensors, Actuators and Controllers communicate over on network link.
 - Network Message Delivery Time = Control Loop Quality

Different Priorities!
 - Relative most other networking, NCS demands Message Delivery Determinism above all other metrics:
 - Loop Closing, Bode & System Instability



Move towards Switched Ethernet from Fieldbusses

Switched Ethernet Permeates industrial NCS (~ 80% )
 - A Layer 2 ‘protocol’ 
 - Often simply implemented with TCP/IP stack, other proprietary protocols exist using SE

Fieldbusses are multi-drop lines common in realtime control systems 
 - See an increasing message delay time with added nodes: hard limit on complexity of systems, interoperability, development



Limitations of Switched Ethernet

Constructs Spanning Tree Network Graph
 - Only one possible route to each endpoint 
 - Contains Single Points of Failure (SPoF)
 - Switches in upper-levels of graph can become busy

Large Message Overhead
 - the Ethernet Header is 64 Bytes, NCS packages are typically between 1-8 Bytes



Multipath: Why not use Datacenter Techniques?

Many strategies exist for Multipath Routing
 - Most are developed for use in Datacenter message passing
 - OSPF, TRILL, etc...

Link-Layer Protocols, requiring state of entire network graph
 - Network Controllers, or Routers, must contain state information about the entire graph

Reconfiguration of Routing Table Rules decreases Message Delivery Determinism
 - On changes to the network graph, or increased busyness at routers, networks must undergo reconfiguration
 - This is a process that takes 200ms on the lower bound

Not real-time!

Implementations not readily available for small systems



Our Approach

Use Stateless Routing, but maintain enough intelligence to perform greedy multipath
 - Statelessness allows routing to take place without large bursts of network-configuration traffic

Use next-hop buffer dept, i.e. ‘Busyness Metric’ to determine best port forwarding
 - Lambda function incorporates known route lengths with information about next-hop buffer wait time

Implement on the same hardware used in endpoint control
 - TinyNet runs in C on easily accessible microcontrollers
 - Systems do not require special IC’s to become attached to the network: only a software stack



Implementation

sim:

Develop hardware to perform routing
 - Uses ATSAMS70 microcontroller with UART links
 - Use hardware to characterize performance

Develop a Simulation to test larger networks
 - Simulation runs in Javascript



Results

Message Delivery Determinism ?
 - 

Scaling ?
 - 

Robustness to Link failure
 - 



Future Work

Contacted Industry Professionals 
 - No data! Please, your data?

FPGAs for Stateless Link Layer
 - UART is ‘stateful’ or requires configuration in that bitrate must be selected per port
 - We implemented testbed FPGA ‘coclocking’ technique 

FPGA Routing
 - TinyNet is simple enough to write into Verilog ?

Learning Lambda
 - Difficult to ascertain what a good Lambda Function is (to account for hop-count and buffer depth simultaneously)
 - Can we learn this by also measuring packet delay time from each node (using acks) ?

Publish and Implement
 - to open source robotics community
 - implement hardware endpoints, control them, incorporate distributed controls research


