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In control systems where feedback data rates are limited, reliability of

communications can drastically affect system stability and there is

a trade-off between communication rate and optimal performance.
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ABSTRACT | The emerging area of control with limited data
rates incorporates ideas from both control and information
theory. The data rate constraint introduces quantization into
the feedback loop and gives the interconnected system a two-
fold nature, continuous and symbolic. In this paper, we review
the results available in the literature on data-rate-limited
control. For linear systems, we show how fundamental trade-
offs between the data rate and control goals, such as stability,
mean entry times, and asymptotic state norms, emerge
naturally. While many classical tools from both control and
information theory can still be used in this context, it turns out
that the deepest results necessitate a novel, integrated view of
both disciplines.

KEYWORDS | Control under communication constraints; feed-
back data rate; fundamental performance bounds; quantized
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I. INTRODUCTION

Communications and control have traditionally been areas
with little common ground. Communications theory is
mainly concerned with the reliable transmission of
information from one point to another, and is relatively
indifferent to the specific purpose of the transmitted
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information and whether it is eventually fed back to the
source. Control theory, in contrast, is concerned mainly
with using information in a feedback loop to achieve some
performance objective, and usually assumes that limita-
tions in the communication links do not affect perfor-
mance significantly.

In engineering systems with large communication
bandwidth, it makes sense to treat communication and
control as independent functions, since the analysis and
design of the overall system is simplified. However, recent
emerging applications, such as sensor networks, micro-
electromechanical systems, mobile telephony, and indus-
trial control networks, have begun to challenge the validity
of this modular approach. In these applications, the aim is
to control one or more dynamical systems, using multiple
sensors and actuators transmitting and receiving informa-
tion over a digital communication network.

Although the total communication capacity in bits per
second may be large, each component is effectively
allocated only a small portion. This can introduce large
quantization errors that impinge on control performance,
due to the low resolution of the transmitted data.

Quantization errors are not a new topic in control
theory, and there exists a significant body of work in which
quantization is modeled as extra additive white noise,
thereby allowing the standard solutions of stochastic
control to still be applied; see, e.g., [16]. Though this
approach is reasonable if the quantizer resolution is high,
it is invalid if the resolution is coarse and the open-loop
dynamics are unstable. In particular, it fails to capture the
fact, discovered only recently in [5], [81], that there exists
a critical positive data rate below which there does not
exist any quantization and control scheme able to stabilize
an unstable plant. This phenomenon strongly implies that
low communication capacity has a significant negative
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effect on the attainable control performance. Clearly, a
much more rigorous analysis is required, in which the
communication and control aspects are considered jointly
rather than in isolation.

Though large networked systems with multiple sensors
and actuators are the driving motivation for the results
described here, the first step towards understanding them
is to analyze the simplest possible network topology,
consisting of one controller and one dynamical system
connected by a feedback loop with a given data rate in bits
per unit time. Real digital communications channels of
course offer a variety of other challenges, such as bit
errors, random delays, erasures, etc., but in this paper we
focus exclusively on explaining the limitations imposed by
the constrained data rate.

Within this perimeter, the most fundamental question
which can be asked is: what is the smallest feedback data
rate above which a given dynamical system can somehow
be stabilized? This is analogous to Shannon’s source coding
theory, which seeks to determine the smallest data rate
above which a given random process can be reliably
communicated, i.e., with arbitrarily small probability of
error [14], [73]. The crucial difference however, is that in
control systems the data are not just transmitted from one
point to another, but are used in a feedback loop.

Moving beyond stability, the next question is: given a
dynamical system, how can one characterize the funda-
mental tradeoff that must exist between the communica-
tion rate and the optimal attainable control performance?
This is the control-theoretic version of Shannon’s rate-
distortion theory for digital communications [7], [74]. The
main aim of this paper is to formulate these questions for
linear dynamical systems, and to explain some of the
answers offered in the literature. However, before doing
so, we first provide a brief overview of some of the major
contributions to data-rate-limited control in the literature.
We then sketch the contents of this paper in more detail.

A. Overview of the Literature

As discussed above, there are striking analogies
between the goals of data-rate-limited control, and those
of source coding and rate-distortion in information theory
[7], [73]. Despite this, information theory has been of
limited value in real-time networked control systems,
since the bounds it yields rely on coders with arbitrarily
long block lengths and delays. This can have a particularly
severe effect if the system has unstable dynamics.

Somewhat more progress on this topic has been made
in the control literature, especially in recent years. As
mentioned above, quantizers in control systems were
traditionally modeled as sources of extra additive white
noise. The shortcomings of this approach were made very
clear in the seminal paper [20], in which it was shown that
a noiseless and unstable linear plant with eigenvalues less
than 2 in magnitude could still be asymptotically con-
trolled to the origin using memoryless quantization of the

state, but if an eigenvalue magnitude was larger than 2
then chaotic trajectories resulted. This result was com-
pletely beyond the reach of the white noise model, and
underlined the importance of a pursuing a rigorous
analysis of coding and quantization in feedback systems.

Subsequently, the first results on minimum data rates
for stabilizability appeared in [4], [81], where it was shown
that a noiseless scalar plant with parameter |a| > 1 can be
kept bounded by memoryless quantized control if and only
if the available data rate exceeds log, |a| bits per sample.
These results were the first instances of the Data Rate
Theorem. Similar tight bounds were subsequently obtained
for the asymptotic stabilizability of noiseless autoregres-
sive moving average systems [58], and linear state-space
systems [34], [59], [77], using different formulations and
techniques.

The improvement from boundedness to asymptotic
stability above becomes possible by permitting the
quantizer or encoder to possess memory, and follow an
adaptive zooming-in/zooming out strategy [12], [44], [65].
This is based on dynamically adjusting the range of the
quantizer so that it increases as the plant state approaches
the target (zooming-in phase), and decreases if the state
diverges from the target (zooming-out phase). The
underlying intuition is that, in order to drive the state to
the target, the quantizer resolution should be high close to
the target but coarse far from it. We remark that these
techniques can be easily adapted to synthesize controllers
yielding guaranteed rates of state convergence. Indeed,
with encoder memory the infinite-horizon quadratic
regulation cost for a noiseless linear plant may be brought
as close as pleased to the to the classical optimal linear
quadratic regulation (LQR) cost, provided that the average
data rate exceeds the intrinsic entropy rate H (defined in
Section II) of the plant [72]. The same problem but with a
limited instantaneous data rate is explicitly solved for scalar
plants in [63]. In this case, the optimal cost is, as expected,
strictly greater than the classical cost, but approaches it
asymptotically with increasing rate.

The idea of increasing quantizer resolution close to the
origin can also be applied to memoryless quantizers. It has
been shown that, if the number of quantization levels is
not constrained a priori, then the most efficient quantizer
for obtaining stability with respect to a quadratic Lyapunov
function is logarithmic [22]. The design of logarithmically
and uniformly quantized controllers that achieve specifed
levels of quadratic attractivity is considered in [35]-[37]. In
the recent article [30] a sector bound approach is used to
study logarithmically quantized systems, in terms of
quadratic stability as well as H, and H,, performance
criteria.

The issue of robustness has also been considered, both
with respect to variations in the plant [66], and in the
effective data rate of the channel [42]. In the latter article,
it is proved that if a noiseless linear plant in continuous
time is quantized and controlled without memory, then
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the strategy which is most robust to changes in the data
packet transfer time is binary quantization with short
sampling intervals. We also remark that stability in the
presence of additive disturbances with known bound is
considered in [34], [46], and [77]. In particular, the last-
mentioned article presents a zooming quantized control
policy which achieves input-to-state stability for linear
systems, without knowledge of a disturbance bound.

Various extensions of the techniques above have been
proposed for nonlinear systems [6], [9], [18], [19], [45],
[48], [62]. The article [45] applies the zooming strategy to
input-to-state-stable nonlinear systems to guaran-
tee asymptotic stability. The same techniques are
used in [18], but with the ISS assumption on the
plant relaxed to asymptotic stabilizability. In [62],
the data rate necessary to stabilize a nonlinear
system is connected to the concept of the
topological feedback entropy of a nonlinear plant.

This notion generalizes the well-known topolog-

ical entropy of a nonlinear system without inputs

[1], [41], [68]. The article [48] extends the
logarithmic quantization strategy to affine non-

linear systems, and in [19] bit-rate bounds for
stabilizing nonlinear systems with a feedforward
structure are derived. See also the papers [33], [83] for
related results on the adaptive stabilization of uncertain
plants.

All the results above concern plants that are determin-
istic apart from a possibly random initial condition. With
regard to stochastic plants, the major contributions have
been in [10], [50], [52], [57], [60], [79], [80]. In [10], data-
rate-limited control of partially observed linear Gaussian
systems is considered under a quadratic cost. It is shown
there that if the measurements are passed through a
minimum variance filter, and the input to the quantizer is
chosen to be the innovations of the filter process, then the
design of the coding and control laws can be performed
separately. Separation and certainty equivalence for linear
Gaussian plants are addressed in a more general setting in
[79], which also presents rate-distortion-theoretic lower
bounds on performance over additive white Gaussian noise
channels and high rate noiseless digital channels. The
article [80] gives necessary and sufficient conditions
for stabilizing single-input, single-output, linear time-
invariant (LTI) Gaussian plants, using uniform quantizers
and variable length coding, under the restriction that the
controller must also be LTI. In the paper [60], the mean
square stabilizability of linear plants with possibly non-
Gaussian noise is considered. By exploiting the properties
of differential entropy power, a universal lower bound is
obtained on the time-asymptotic mean square state norm.
In particular, this bound implies that as the data rate
approaches the intrinsic entropy rate H of the plant, the
mean square state becomes arbitrarily large, regardless of
the coding and control scheme. The recent article [50] also
has the same flavour of result, showing that as the Shannon
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capacity C of the feedback channel decreases towards H,
the ability of the controller to shape the plant input power
spectrum diminishes.

The possibility of obtaining tight bounds on the data
rate necessary to stabilize a system is based on the use of
dynamic encoders and controllers with unlimited memory.
The analysis is much more intricate if we restrict to
memoryless or finite memory schemes. Under memory-
less, finite-level quantization, the set of reachable points is
discrete or at most dense [3], [9], and only practical
stability can be achieved, namely states in some initial set

As the data rate approaches the
intrinsic entropy rate H of the
plant, the mean square state
becomes arbitrarily large,
regardless of the coding

and control scheme.

can be driven to a smaller target set, and not asymptotically
to the origin [5], [20], [24], [67], [81]. The main difficulty
in this case is due to the fact that performance should be
evaluated through a pair of indices, one depending on the
steady-state properties of the closed-loop system, the sec-
ond on the quality of the transient [25], [26]. This prevents
the existence of a unique optimal controller, since it would
generally depend on the weights associated with the two
indices. Even though memoryless quantizers and con-
trollers have been studied for longer, since the seminal
paper of Delchamps [20], results on the achievable perfor-
mance in this case are still quite arduous to obtain and
difficult to interpret [25], [26]. The simplest contribution
in this field shows that, according to the relative weights
assigned to the steady state and to the transient, there are
three different optimal strategies: the first based on the
uniform quantizer, widely used in applications, the second
on the logarithmic quantizer [22], similar to the yu- and
A-law companders of communications [69], and the third
on the chaotic quantizer, recently studied in [23] and [24].
In the framework of memoryless quantization, a recent
paper by Delvenne [21] is very promising, because it seems
to provide a new perspective which makes the problem
much more treatable.

Though the focus of this paper is on control over
noiseless digital channels, we remark here that a number
of results on noisy channels have recently been proposed.
Various models of the channel have been treated, e.g., the
digital erasure channel [47], [54], [78], the binary sym-
metric channel [53], [71], [75], and the truncation channel
[51]. If the communication channel between the sensor
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and controller is erroneous, the stabilization problem
becomes very complicated, and the results can depend
critically on the particular notion of stability, and whether
or not the transmitter has side-information on the channel
errors that have occured [47], [51], [54], [75], [78]- The
main point is that we cannot generally adopt the Shannon
concept of capacity C as the relevant figure-of-merit for
noisy channels in feedback control systems. Although the
inequality C > H is both necessary and sufficient for
almost sure asymptotic stabilizability without side-
information [53], this bound does not hold true for other
stability objectives, e.g., mean square stability. The reason
is that in Shannon coding theory, reliable transmission at a
rate close to C is possible only at the price of significantly
increasing the coding delay. However, as this delay is
increased, the plant state will be driven further from the
origin, and so more information again will be needed to
stabilize it. In [71], the novel concept of anytime capacity is
introduced, a notion which takes into consideration the
recursive structure of incoming data. It is argued that if the
control objective is moment stability, then anytime, not
Shannon, capacity is the correct figure of merit for the
noisy channel. Unlike Shannon capacity however, anytime
capacity does not in general have a simple expression
amenable to computation; this, at the moment, is its main
drawback. Notwithstanding the preceding discussion, it
turns out that when the channel is analog with additive
Gaussian noise, and the plant is linear Gaussian, the
inequality C > H is necessary and sufficient for mean
square stabilizability, with no quantization or coding
required [29], [79]. See also [17], [70] for related results
on noisy bandlimited analog channels.

All the articles described above focus on systems with
one sensor and one actuator. However, as remarked at the
start of this section, the main application for this research is
in networked control systems with multiple sensors and
actuators. Steps have been recently taken towards deriving
fundamental necessary and sufficient rate regions for the
stabilizability of such systems, for the case of multiple
sensors with a single actuator [55], [76], and with multiple
actuators [56], [61], assuming no noise. Channel noise and
coding strategies for networked systems are considered in
[43], and in [32] a model predictive approach is proposed
for designing a centralized control strategy for a noisy linear
system with multiple, separately quantized inputs and
outputs. Finally, we remark that there are two other strands
of research on systems with multiple sensors and actuators,
in which quantization and data rate limitations are largely
ignored. One focuses primarily on scheduling and commu-
nication medium access protocol design—see, e.g., [13]
and [64]. The other arises from coordination problems in
which the main interest is on decentralized strategies and
the graph-theoretic aspects of the required information
flows. The special issue [2] contains recent articles along
these lines, as well as discussions of other communication
issues such as variable delay and random dropouts.

B. Overview of Paper

The aim of the present paper is to present some of the
main ideas that form the basis of this field of research. The
style will be between a tutorial, with an attempt to cover
the multiple aspects of the problem, and a technical paper
proposing some new results.

Indeed, in the next section we present new universal
lower bounds on feedback data rate and performance for
linear systems with deterministic bounded disturbances.
The elementary nature of our arguments will hopefully
permit the essential aspects of the problem of data-rate-
limited control to emerge more clearly. It also lets us
easily relate both the data rate and channel delay to the
degradation in attainable performance, an original
contribution.

On the other hand, in order to maintain the tutorial
character of the paper, in the construction of the encoder
and controller in Section II-B, we prefer to focus on scalar
systems. The same has been done in Sections IV and V.

In Section III, we discuss what is known about the
structure of coding and control schemes for stochastic
linear plants. Building on the arguments in [79], we
demonstrate that certainty equivalence and a separation-
like property apply under a quadratic cost. In other words,
the joint coding and control optimization problem can be
solved by encoding the plant states so as to minimize a
certain distortion metric, and then using the decoded
estimate in a certainty equivalent control law. However,
complete separation between coding and control is not
attained, since the coder distortion metric depends on the
control input matrix as well as the plant dynamical matrix.

In Section III, we also discuss the fact that if a linear
plant has at least one strictly unstable mode and either the
initial condition or process noise distribution has infinite
support, then no time-invariant coding and control law
with a finite-valued internal state can stabilize the plant.
This rules out many common coding schemes, such as
memoryless quantization and differential pulse code mod-
ulation, from infinite-horizon stochastic control problems.
Instead, coder-controllers with continuous-valued internal
states must be considered, similar to the zooming
quantizers of [12].

In Section IV we restrict to control strategies in which
the encoder and the controller can have finite memory,
namely their state spaces have finitely many elements. It is
not surprising that this restriction complicates the
analysis. It is surprising instead that the particular case
of memoryless controllers, which is important in applica-
tions, basically maintains these difficulties. As mentioned
before, in this case only practical stability is obtainable
when starting from unstable plants, and so the perfor-
mance has to be described by two conflicting parameters,
one describing the steady-state behavior, the other de-
scribing the transient behavior of the closed-loop system.
In this analysis we follow the approach recently proposed
in [21], with some original extensions. We present both a

Vol. 95, No. 1, January 2007| ProceeEDpINGs OF THE [EEE 111



Nair et al.: Feedback Control Under Data Rate Constraints:

general bound highlighting the relations between the
performance parameters and the complexity of the control
scheme, and two control techniques that allow this bound
to be attained in some particular cases.

The key ideas—namely, the
linear amplification, addition,
and partitioning of uncertainty
volumes—remain the same, and
in fact emerge more clearly.

The analysis becomes even more arduous if we restrict
to quatization laws with connected quantization regions.
The aim of Section V is to present some fundamental
bounds relating the controller complexity and the perfor-
mance in this case, as well as a brief description of the
fundamental synthesis techniques which can be proposed
in this case, namely the zooming-in/zooming-out strategy,
the uniform quantizer strategy, the logarithmic quantizer
strategy and the chaos based strategy. In addition, we
briefly present some of the robustness results proposed in
[42] that characterize the relation between quantization
and sampling period in the control of continuous time
systems.

We conclude this paper with a section devoted to
conclusions, containing a list of problems which we think
should be considered in future research.

Notation: The symbol R" will denote the set of the
n-dimensional column vectors with real entries while R"*™
means the set of the n X m matrices with real entries. If
A is a square matrix, detA denotes its determinant. The
2-norm of a vector x € R" will be denoted by ||x||. Dis-
crete time is denoted by t € [0,1,2,...), and the symbol
a; is used to indicate an element of a sequence. Where
there is no risk of confusion, the entire sequence is also
denoted by a;; otherwise the more explicit notation
{a:},~ o is used. If S is a finite set, ||S|| represents its
cardinality, namely the number of its elements. If X is a
measurable subset of R", the symbol A(X) means the

Lebesgue measure of X.

IT. CODING AND CONTROL SCHEMES
WITH UNRESTRICTED MEMORY

In this section, we present a formulation of the problem of
communication-limited control for linear time-invariant
systems with additive disturbances. For the sake of
generality, we permit the coding and control policy to
have possibly unrestricted memory," and as our emphasis

'We note in advance that there exist stabilizing policies with finite-
dimensional memory.
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here is primarily on understanding the effects of finite data

rate and delay, we assume that the digital channel used for

feedback is errorless, with a constant propagation delay.

The main results of this section, Theorem 1 and
Proposition 1, present fundamental lower bounds
on the allowed data rate and time-asymptotic
state norm for all stabilizing policies.

The framework presented in this section is
essentially that of [60], in which the disturbances
were modeled as possibly non-Gaussian random
vectors. For the sake of simplicity, we adopt a
deterministic viewpoint here, and regard the
disturbances as bounded unknowns. The key
ideas—namely the linear amplification, addition,

and partitioning of uncertainty volumes—remain the
same, and in fact emerge more clearly.

Nonetheless, there is an important aspect of the
stochastic problem, namely the instability of all finite-state
coding and control schemes, which has no parallel in the
deterministic framework. This is discussed briefly in
Section III-B. In addition, in the deterministic setup, the
universal lower bound on the state magnitude is tight for
scalar plants. That is, for one-dimensional systems we
obtain an exact characterization of the fundamental
tradeoffs between data rate, delay, and “cheap” control
performance.

Consider the partially observed, discrete-time linear

plant
Xt+1
Yt

where x; € R" is the state at time t > 0, u;, € R™ is the
control input, y; € RP is the measured output, v, € R" is

= Ax; + Bu; + vy,

= Cx; + wy, Vi 20

)

unknown process noise, w; € RP is unknown measurement
noise, and A, B, and C are constant known matrices of
appropriate dimensions. For the problem to be well-posed,
it is also assumed that the pair (A, B) is reachable, and
(C,A), observable.

Without loss of generality, it may be supposed that a
similarity transformation has been applied to the state
coordinates so that the stable and unstable modes of the
plant are decoupled, i.e.,

AT 0
St

where all the eigenvalues of A" € R *f have magnitudes
> 1, all those of A® € R™ have magnitudes <1 and
where the 0’s denote matrices with zero entries of

(2)

appropriate dimensions. It turns out that in all our results
the stable part does not play any key role. For the sake of
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keeping the notation as simple as possible, we therefore
assume from now on that A= A", namely that all
eigenvalues have magnitudes > 1. We also define the
intrinsic entropy rate of the plant to be

H := log, |det4]. 3)

As mentioned above, in order to simplify the analysis
we assume in this section that xg, v;, w; are determin-
istic unknowns, belonging to bounded and Lebesgue-
measurable sets Xy C R", V C R", W C RP, respectively.

Suppose that the sensors that measure the plant output
are located some distance away from the controller, and
communicate with it over a digital channel, onto which
one symbol s; from a finite alphabet S of cardinality
M >1, is transmitted during the (t+ 1)th sampling
interval. In many practical applications, the channel is
inherently noisy because of interfering transmissions,
background noise, contention with other users, and so on.
However, by assuming that appropriate error correction
coding or repeat request protocols are in place at lower
levels of the communication protocol, we can view the
channel as being noiseless, with possibly a constant
propagation delay of d sampling intervals.” We define
the data rate of the channel as

R :=log, M(bits/sample). (4)

As the symbols in the channel are discrete-valued but
the plant measurements are continuous-valued, analog-to-
digital conversion, or coding, is required. In practice
constraints such as complexity and finite memory may be
important but, in the spirit of source coding [73], such
limitations will be ignored in this section to concentrate on
the communication aspect of the problem. Each transmit-
ted symbol may thus depend on all past and present
measurements and past symbols

st:’yt(yh"'ayo;st—lv"'aso) 687 Vtzo (5)

where 7y, : RP*(1) x S' — S is the coder mapping at
time t. Each transmitted symbol experiences a propagation
delay of d sampling intervals, so at time t the controller has
the symbols sg,...,s_q available. It can then apply a
control law of the general form

uy = 6(si—gy.--,50) € R™, Vt>0 (6)

2If a retransmission protocol is in use at a lower level, then the
sampling interval cannot be too short.

CONTROLLER & ut SYSTEM
St—d T
CHANNEL
5 I
Yt
CODER y SENSOR

Fig. 1. Scheme representing the control under communication
constraints.

where 8, : 874 — R™ is the controller mapping at
time t.> Fig. 1 illustrates the control scheme which results
from these considerations.

Let the coder-controller be defined as the pair of coder
and controller mapping sequences (7,98) := ({%},~ o
{6}, > o)» and let C be the set of all such pairs. We quantify
the performance of a coder-controller by the asymptotic
worst-case state norm

J:= lim sup {[[x]| : xo € Xo, .
t—00

v EV,w €W,j=0,1,...}. (7)

In other words, we are interested in how small the state
can be made in the long-term worst case scenario, if no
cost is placed on the controls and the data rate is fixed. In
the sequel, we employ elementary arguments to derive a
universal lower bound on the cost of any coder-controller,
in terms of the open-loop dynamics, the data rate R, and
the channel delay d.

A. Universal Lower Bounds

We now proceed to obtain universal lower bounds that
apply to any causal coder-controller, by studying the
evolution of state uncertainty volumes. The first result,
Theorem 1, presents universal lower bounds on data rate
and worst case asymptotic state norm applicable to all
stabilizing coder-controllers. The second result, in Prop-
osition 1, is a tighter bound which also captures the effect
of channel delay. For the case of scalar systems, it is in fact
optimal.

The basic intuition we use to establish these results is
that the open-loop growth in subspace uncertainty volume

3We adopt the convention that the first d control signals ug, . .., u4-1,
that cannot be obtained from (6), are known preset inputs. Similarly, in
the coder (5) at time t = 0, s is taken to be a function only of yy, namely

So = 70(}’0)-
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must be counteracted by a reduction in volume due to the
coding partitions. As it turns out, volumes are much easier
to analyze directly than vector norms because of several
convenient mathematical properties not possessed by
vector norms. The basic techniques in this section were
originally used in a stochastic setting, with differential
entropy power being the stochastic version of 2/nth power
uncertainty volume, and the entropy power inequality
playing the role of the Brunn—Minkowski inequality below,
leading to a mean-square-sense analog of Theorem 1 [60].
However, we adopt a purely deterministic framework in
this paper so that the key ideas in the argument may come
through more clearly.

Conventions: Throughout the remainder of this section,
all system variables are to be understood to be implicit
(S V, Wo,
wi ... € W}. For the sake of notational conciseness this

functions on the domain {xy € Xp,vg,v1...

will not be indicated explicitly; only additional restrictions
are indicated. In particular, we will simply use the notation
sup||x¢|| to denote

sup{||x|| : xo € Xo,vo,v1... € V,wo,wy... € W}

Theorem 1: Let any causal coder-controller (5), (6), with
data rate R (4), be applied to the noisy linear system (1),
with intrinsic entropy rate H (3). Then the following
bounds hold.

1) If R < H, and the process noise set } has Lebesgue
measure A\(V) > 0, then
lim sup x| = oo
t—00
2) else if R > H, then

ﬁfl/n)\(v)l/"

1 —2-(R-H)/n (8)

lim sup []x| >
t—00

where [ is the volume of the n-dimensional
sphere with unit radius.
Proof: To begin the volume-based analysis, observe
that for any bounded measurable X C R", it clearly holds
that

A(X) < Blsupfllxl] : x € A})" )
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Hence, if we put I, ;= sup ||x|| for t =0,1,... , it holds
Bl > /\({xt}) Further noting that {xt} D) {xt : {s
{c]} 0} for any symbol values co, . .

,C—1 € S, we have

G, > max A({ s ;;3:{9-};;3)})1/":: m.. (10)

LC—1€ES

In what follows, we will obtain a recursive lower bound on
the nth root maximum state uncertainty volume m.
Observe that

My = Max )\({xrﬂ {S;}, =0 — {C}}] 0})1/"

Gifj=o0

= g}lfxo )\({Axt + Bét({cj};:g)

T {SJ}] -0 = {C}}) 0})1/n

{Icr,lfui, /\({Axt +v: {s,} 0
_ {Cj};zo})l/n

using the fact that the volume of a set remains invariant

(11)

under a constant translation. Now, for any two sets
X,Y C R, define the set sum X+ Y :={x+y:x € X,
y €Y} If X,) are Lebesgue-measurable, the Brunn—
Minkowski inequality (see, e.g., [14, p. 501]) states that

AX 4+ V)" > A"+ A (12)

i.e., nth-root volume is super-additive. As v; does not de-
pend on the symbols co, .. ., c;, we can rewrite the set on
the right-hand side (RHS) of (11) as

{ax v s (s} = (oo}
{Axt {5i}i0 = g} }+{Vt}-

Applying the Brunn-Minkowski inequality, we then have

mor > max A({ax : {53 = {o)L DW

{c,} =0
+ Ao )"
= |det A|"/™ max

{e}i0
max A({xt : {sj}]t':o = {Cj};zo})l/n

+ A" (13)
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using the standard formula for volume change under linear
transformations. As s; is a function of previous symbols,
and past and present states

{xt {s}} =0~ {Cl}t 1} U{xt {s]} =0 {Cj};zo}'

€S
Hence
= da)))
Zs ({xt {31 =0 — {C)}, o})
ma ({4 = {6} )

Substituting this into (13), we obtain

({1

I /\

mey > |detA| Un max

{Cl}t 1
—1/n - - 1/
x MY /\({xt : {si};:é = {Q‘H’:é})
+ A({u )"
detA 1/n
_ et m, +>\(V)1/n

=2~ R=H)/ny L A(V)M™ (14)

If R < H, then it follows that m; — 0o. By (10), this proves
item (1) in the theorem.

Assume now that R > H. We can easily solve the forced
linear recursive inequality (14) to obtain

+ (mo

Letting t — oo in (15), we immediately obtain (8). |

AW/

e Ty

B A" )~ (R=H)t/n
1= 2 R=H)n :

(15)

Remarks: Notice that the bounds above are also lower
bounds of the cost ] = lim,_, , sup ||x;|| defined in (7). The
first part of the theorem states that any coder-controller
which yields uniformly bounded worst case states must
operate at a data rate R which strictly exceeds the entropy
rate H of the plant. In other words, information must be
transported as fast as the plant generates it, or else
instability occurs. As it turns out, it is possible to attain
closed-loop stability at any data rate R > H, i.e., the bound
R > H is in fact tight. This is sometimes known as the data-
rate theorem, and has been shown to apply, under different
notions of stability, to linear plants that are deterministic

Feedback Control Under Data Rate Constraints: An Overview

[5], [34], [59] and stochastic [60]. In Section II-B, we
describe how to construct a stabilizing coder-controller at
any rate R > H, for the special case of a scalar plant.

The second part of the result above indicates that for
any coder-controller, the cost increases as the noise
uncertainty volume A()) increases. Furthermore, as the
data rate is reduced to the critical value H, the cost must
always become unbounded, implying that a data rate which
is too low affects performance significantly, regardless of
the coding and control scheme in use. This was also
established in a mean-square setting with unbounded non-
Gaussian noise in [60].

A major deficiency of (8) is that it is independent of the
channel propagation delay d. As performance should
naturally deteriorate as d increases, this bound clearly
cannot be tight. However, a better one can be obtained in a
few more steps, using the same volume analysis ideas.

Proposition 1 (Universal Bound in Terms of Rate and
Delay): Let any coder-controller (5), (6) with data rate R
(4), and channel propagation delay d, be applied to the
noisy linear system (1) with intrinsic entropy rate H (3). If
R > H > 0, then

lim sup [|x;|
t—00

2Hd/n
1— 27(R7H)/n

2Hd/n -1
T

> gy AW (16)

where (3 is the volume of the n-dimensional sphere with
unit radius, and A(V) is the Lebesgue measure of the
process noise set.

Proof: Looking d sample intervals ahead, (10) can be
replaced by

B > A{xesa})

== )\({Adxt + rt + Zt}) I Vt Z O (17)
t+d—1 ) .
where 1, := Z At+d_1_j35j<{3i}]i;g)v
j:t
t+d—1 )
Zi= Y AT, (18)

=t

Observe that with the coder-controller fixed, r; and x; are
functions of the past noise terms and initial condition,
whereas z; is determined by only the present and future
process noise vy, ..., Veq—1. In terms of set addition, we

thus have

{Adxt—i—rt—i—zt} = {Adxt—l—rt} —&—{zt}
t+d—1

={A%4rf+ > {at Ty

j=t

(19)
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The effects of d and R do not
separate out in a simple way,
and with increasing delay the
performance deterioration
due to a low data rate
becomes more severe.

From (17) and (19), applying the Brunn-Minkowski
inequality (12), we obtain

ﬂl/an—d > /\({Adxt + rt})l/n
t+d—1

+ Z )\({At+d—1—jvj}) 1/"’
=t

> )\({Adxt + rt})l/"
t+d—1 )
+ Z |detA|(t+d717})/n)\(V)l/n,

j=t

vt > 0. (20)

As additional restrictions on a set cannot increase its size

)\({Adxt+rt}) > )\({Adxt—i—rt : {s}'};:o = {67}5:0})’
:)\({Adxt : {s]-};:O = {C,-};zo})7

Vo, ..oy Ct

by the translation-invariance of Lebesgue measure, since r;
. . . t-1
is constant given the given symbols {Sj};:o- Hence

.....

,,,,,

Substituting this into (20), and simplifying, we obtain

|det A" —1

1/n
deran T 20

ﬁl/an,d Z |detA|d/nmt +

By taking inferior limits, and substituting the second
inequality of (8) into the RHS, we obtain (16). ]

Remarks: The bound (16) provides a method for com-
paring the relative impacts of delay, data rate, open-loop
instability, and process noise on steady-state control
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performance. The formula states that for a fixed
data rate R > H the steady-state norm must always
grow at least like 2Hd/n (uith increasing d, and for
fixed delay, like 1/(1 — 2~ (®™M/") with decreasing
R. However, the effects of d and R do not separate
out in a simple additive or multiplicative way, and
with increasing delay the performance deteriora-
tion due to a low data rate becomes more severe. A
universal bound growing exponentially in delay d
was also derived in [11], for analog channels.

If H = 0 then the arguments used in the preceding proof

do not hold. However, we can easily obtain in this case

1 n
z% sup [xi|| > p~/" [H—R/n + d] AV @)

which is just the limiting value of the lower bound (16) as
H — 0. In this case, the individual effects of data rate and
delay on performance do separate out additively.

We remark briefly that the volume-based techniques
used to derive (16) also yield universal lower bounds on
worst-case sum-like costs, and similar ideas can also be
used in mean-square formulations with stochastic noise. In
some applications, it may be desirable to allow the coding
alphabet size to vary over time in a predetermined way. It
can be shown that (16) still holds in this case, provided
that R is taken to be the long-term average data rate.

Observe that in the limit R — oo, corresponding to the
classical situation without communication constraints,
(16) becomes

2H(d+1)/n -1

1/n
A

lim sup [[x.|| > B~1/"

t—00

(22)

As no assumptions but causality were made on the control
law, this lower bound holds for any possibly nonlinear and
time-varying controller with unconstrained data rate.

Finally, note that in the special case of a scalar system
with dynamical parameter |a] > 1, we have n=1 and
B =2, and so

Jal n ja' = 1{ A(V)
1—Ja|/M o —1| 2

2 M1 A\(V)
1—2-®R-H) " 2H_1]| 2 °

lim sup |x,| >
t—00

(23)

In the next section, we will construct a coding and control
scheme for scalar systems which actually achieves this
lower bound. In other words, the RHS of (23) is in fact the
optimal asymptotic worst case state magnitude.
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B. Tightness of Bounds

A natural question to ask is whether the universal
lower bounds on data rate and performance obtained in
Section II-A are tight, i.e., whether it is possible to
construct a coder-controller with data rate and/or cost
arbitrarily close to them. The tightness of the errorless data
rate bound R > H has been established in numerous articles
for linear plants with bounded disturbances [34], [77],
stochastic disturbances [60], and no disturbances [34]. The
essential steps are to 1) transform the plant into real Jordan
form, so that all the open-loop dynamical modes of the
plant are decoupled and 2) allocate the available data rate
among the unstable modes so that each mode receives an
average data rate which is slightly larger than its intrinsic
entropy rate. We refer the reader to the references above
for details. It is important to note that although we have
permitted the coder and controller to have possibly infinite
memory here, the actual construction of a stabilizing coder-
controller typically only requires a finite-dimensional re-
cursive structure. In addition, the channel data rate must be
defined in a time-average sense for rates arbitrarily close to
H to be attainable in general.

On the other hand, the tightness of the state norm
bound (16) is difficult to confirm for state dimensions
greater than 1, and geometric considerations suggest that it
is not tight. However, for scalar fully-observed plants, the
bound is in fact attainable, and we construct the optimal
coder-controller below.

Assuming that M > |a
the coder can construct, on the basis of the past symbols
S0, - - Si—1, an interval X, of some length 2I; containing
the state x;. Note that this interval will generally not be
centered at the origin. At time t, the coder partitions X

, suppose that just before time ¢

into M equal subintervals, and transmits the index of the
one (call it Z,) which contains x;.

From the dynamics of the plant, x;1; must then lie in
the interval

X =aZ, + bu, + {Vt}

using set addition. As the coder also knows u; = &;(s_q,

.,80)s it can calculate the new interval. Observing that
the length of Z, is 2l;/M, that {v,} has length A(}), and
that u; has the effect of a simple translation, it follows that
the half-length of X', satisfies

af, , AV
=+ 22 ve>o.
b Mlt+ 5 , VE>0
L AW)
= k= o ) 29

At the other end of the channel, just after time t the

controller would have received s, . . . , si—q. Using the same

interval update equations as the coder, it can determine
the interval X;_44; containing x;_44+1. From the dynamics,
it then knows that

t t
X1 € T i= aerde +b Z GHU;‘ + Z {atij"j}

j=t—d+1 j=t—d+1
(25)

and calculates u; such that J¢;; is centered on the origin.
Denoting the midpoint of X;_441 by X;—4+1, and observing
that the noise sets {v;} are symmetrical about the origin,
this means that the control at time t is given by

t—1

da t—j
U = —a"%—a41/b — E au;.

j=t—d+1

From (25), the half-length of J;y1 3 x;41 is readily seen
to be

o' —12(V)

-1 2

t
AV
et 3 T2 el
j=t—d-+1 la

As J 41 is centered on the origin, we immediately obtain

d
A= 1AY) s gon,
la] =1 2

sup [x;41] < |a|dlt7d+1 +

As a consequence, using (24)

jaf* a1
4

A(V)
1—|a|/M| la]—1 '

2

J=lim sup |x;11| < l
t—00

This scheme thus achieves the universal lower bound (23),
and is globally optimal.

III. STRUCTURAL RESULTS FOR
STOCHASTIC PLANTS

In this section we discuss what is known about the struc-
ture of coding and control schemes for stochastic linear
plants, i.e., if the initial condition and additive distur-
bances entering the linear plant (1) are treated not as
bounded unknowns, but rather as realizations of random
vectors with infinite-support distributions. Though the
essential nature of the problem does not change, there
are nonetheless some significant differences, particularly
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in regard to the structure of the coding and control
scheme.

Beginning with the good news in Section III-A, the
advantage of the stochastic viewpoint is that certainty
equivalence and a separation-like property apply if the cost
is quadratic. In other words, the joint coding and control
optimization problem can be solved by encoding the plant
states so as to minimize a certain distortion metric D, and
then using the decoded estimate in a certainty equivalent
control law. If the plant is partially observed with Gaussian
noise, then the optimal encoder will act instead on the
conditional mean state given the plant outputs. However,
complete separation between the coding and control
problems is not attained, since the distortion metric D
depends on the control input matrix as well as the plant
dynamical matrix.

In Section III-B we present the bad news: if a linear
plant has at least one strictly unstable mode and either the
initial condition or process noise distribution has infinite
support, then no time-invariant coding and control law
with a finite-valued internal state can stabilize the plant.
This means that simple and common coding schemes, such
as memoryless quantization and differential pulse code
modulation, cannot be considered for infinite-horizon
stochastic control problems. Instead, we are forced to
consider coder-controllers with continuous-valued internal
states, similar to the zooming quantizers of [12]. In
contrast, if the disturbances were modeled as bounded
unknowns then a memoryless quantizer with sufficiently
large range can always stabilize the plant.

Throughout this section, we assume that the linear
plant takes the form (1), but with fully observed
states y; = x;, and where the initial condition xq
and additive disturbances vg,vi,... are realiza-
tions of mutually independent random variables
Xo, Vo, V1, ... with distributions possessing possi-
bly noncompact support. Additional assumptions
relevant to each subsection are introduced as
necessary.

A. Certainty Equivalence and
Quasi-Separation

In the classical situation without communication
constraints, it is well known that if the process and
observation noise in the system are independent processes,
and the cost is quadratic in state and control, then both
certainty equivalence and the separation principle hold (see,
e.g., [8, ch. 5]). In other words, the solution is obtained by
1) filtering the plant outputs to generate the conditional
mean of the current state given past and present
measurements and past controls, and then 2) using this
conditional mean in the optimal control law which would
apply if the plant were fully observed (certainty equiva-
lence). The first step is equivalent to minimizing the mean
square state estimation error conditioned on past and
present measurements and past controls. By the linearity

118 PROCEEDINGS OF THE IEEE | Vol. 95, No. 1, January 2007

An Overview

of the plant, this conditional mean square error is
independent of the control policy used, and hence the
optimal filtering law will not depend on the control law or
the input matrix B, apart from the control term added at
each time step. Hence, it may be assumed that these
controls are in fact zero. In the second step, it is clear that
the optimal gains do not depend on the solution to the
filtering problem or on the output equation, since these
gains are derived assuming full state observation. Thus, the
classical optimization decomposes into two separate
subproblems: an optimal filter problem for the uncon-
trolled version of the plant, and an optimal control
problem assuming full state observations.

We explore here the extent to which these useful
properties hold if the measurements are encoded and
transmitted over an errorless digital channel to the actu-
ator. In general, the encoder and decoder introduce non-
linearities into the feedback path that invalidate certainty
equivalence and the separation principle. However, we
show that for recursive encoders that subtract out the
effect of past controls prior to coding, certainty equiva-
lence still holds. Furthermore, there is no potential loss of
optimality in restricting the encoder to this form. The
design of the optimal encoder then reduces to minimizing
a certain distortion metric. This metric depends on the
input matrix, so the strong separation between estimation
and control of the classical case no longer applies. Instead,
we have an optimal control problem nested within an
optimal estimation problem. The early articles [27], [28],
[40] presented similar results for memoryless quantizers
but are problematic; see [49].% In [15], analogous results

For recursive encoders that
subtract out the effect of past
controls prior to coding, certainty
equivalence still holds.

were derived for quantizers with a differential form, but the
global optimality of this structure was not considered.
Similarly, a separation principle was also derived in [10]

*In [27] and [40], it is assumed that the errors yielded by the
memoryless quantizer are independent of past controls, which is generally
incorrect. In [27], there is also confusion about the information set
available to the controller, and an incorrect assertion that the state
conditioned on past symbols is Gaussian. In [28], it is claimed that the
optimal encoder is obtained by minimizing at each time step the current
weighted mean square quantization error, conditioned on past quantizer
outputs. The optimality of this greedy algorithm is doubtful, since the
current quantizer output will generally affect the conditional quantizer
error at future times, but the dynamic programming argument is only
sketched for the terminal time.
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for a class of encoders that quantized the innovations
directly.

More recently, certainty equivalence and separation
were discussed in [79] for fully observed plants controlled
via general, possibly noisy feedback communication
channels. Though the results are correct, there is a small
but somewhat crucial gap in the proof.” In what follows,
we build on the ideas from [79] and complete the proof of
certainty equivalence and quasi-separation for fully ob-
served linear stochastic systems that are regulated via
noiseless digital feedback channels.

Let the cost of a given coder-controller (v,8) =
{7} > 0, {6t} 5 ¢) €C (5), (6) on a finite time interval

t €[0,...,T] be given by the expected quadratic criterion
T

I i= E[Xp,QriaXr] + > E[X/QX, + URU,]  (26)
=0

where Qry1,...Qp > 0,Ry,...Ry > 0 are specified weight
matrices that are respectively positive semidefinite and
positive definite. Let

t—1

ot ({0 ) o= Do a8y (s

=0

(27)

i.e., the accumulated effect of past controls on the state x;,
and consider the class C of causal coder-controllers that
subtract this out prior to coding

s=({x - (ts ™)} Asisd) o9
Ug =5t({si}§;(d)>-

(29)

It is trivial that any coder-controller in C is also in C.
Furthermore, any coder-controller in C is also in C, since
we can write

St = ’Yt({xi}f:oa {Si}s;(l))
({3

+ o (tsh )} )
=7 ({xi — 4 ({Si};;gﬂ) }::0» {Si}f;é) :

*Namely, an auxiliary fully observed linear system with uncorrelated
process noise is constructed, and it is asserted that the optimal controls for
this auxiliary system are still given by the usual, linear law. This claim also
occurs elsewhere in the literature, but simple counterexamples can be
constructed for horizon-1 scalar plants.

Ut
) SYSTEM
St—d
CHANNEL
r— -1 = /1
l o ||
| |
| - |
, I 4 Tt
l Y SENSOR
l—— _ _ J

Fig. 2. scheme representing the new parametrization of the
coder-controller.

Thus, C = C, and so without loss of generality we may
assume that the coding and control equations are given by
(28) and (29). This new parametrization of the coder-
controller pairs is illustrated in Fig. 2. In effect, we have
changed the global optimization coordinates from (v, §) to
(v,6).° The reason for doing so is given in the following
lemma.

Lemma 1: Let the coder-controller (28), (29) be applied
to the fully observed stochastic linear plant (1). Then the
statistics of the symbol sequence {S;}, are independent
of the controller 6. -

Proof: Define

_ —d—
X=X — ({sj};:o 1). (30)
It is straightforward to establish that
t—1 .
% = Alxo+ Y ATy, (31)
=0

i.e., {X}o is the state trajectory if no controls were
applied. Evidently, the statistics of the {X,} process
are completely independent of the choice of coder-
controller. As s, = 7/ (x:, {si}ﬁ;(l)), it follows that for fixed
Yo: N> - - the symbols transmitted do not depend on
the controller 6. [ ]

We are now in a position to state the main result of this
section. Its first part states that certainty equivalence holds

This cannot be done if the memory of the encoder is finite, nor if we
only seek to minimize over 6 with +y fixed.
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if the effect of past controls is removed prior to coding, as
above. The second part states that this structural
restriction does not sacrifice global optimality, and that a
globally optimal coder-controller (v, §) can be constructed
by finding an encoder 4/ for the uncontrolled process (31)
which minimizes a certain quadratic distortion criterion,
and then applying certainty equivalent controls. As this
criterion depends on the control input matrix B, the strong
separation of classical linear stochastic control does not
apply, although keeping the mean square coding errors
small remains the optimization objective.

Theorem 2 (Certainty Equivalence and Quasi-Separation):
Let any coder-controller be applied to the fully observed
stochastic linear plant (1) under the horizon-T mean
quadratic cost J, (26). Without loss of generality, represent
the coder-controller in the (7, ) form (28), (29). Then,
for fixed mappings ), 7], - -
certainty equivalent

., the optimal control law is

Ut = 6: (St7d7 e SO) = _Lt[E[Xt|St7d7 e ,So] (32)

where S;_4,...,So are the symbols received by the
controller up to time t, and Lo,...,Lr are the classical
optimal gain matrices, defined by the downward Riccati
recursion

P, =A'P.i (I — B(B'P1B+R) 'B'Py)A
+Q, 0<t<T, Pry1 =Qrps
(B'Piy1B + R;) 'B'PyiA

(33)
(34)

L

(see, e.g., [8, ch. 4]).
Furthermore, the global smallest cost over all coder-
controllers (7, 6) (5), (6) decomposes as

[XoPoXo| + inf D

inf]2 =
7,6 Yo Vyree-

where D is the controller-independent distortion criterion

S (e[t ] ~e[falts )
X P ([E |:X~I+1 | {Si}gi(l)_d}

—E[Zial{si}od] )] (35)
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and where X, := X, — E[X,|{S;}/_{] is the conditional cod-
ing error for the uncontrolled process {X},, (31).

Proof: As the classes C and C are identical by the
discussion following (27), we may represent the coder-
controller in the (v/,8) form (28), (29), without loss of
any generality. Letting )Zt := E[X|Si—a, - - -, So), it is trivial
to show by standard arguments that

E[X/QX//Si—a - -, So]
= E[(X, — X)'Q(X — X)[St-as - - -, So] +X.QXr.

Averaging over the received symbols and substituting into
(26), we obtain

=L |:X/T+1QT+IXT+1]

T
+> F [XZQ[Xt + U{RtUt}

t=0

T+1

+ ) [ - X)X - X))

t=0

(36)

quking at the second sum, observe that since
gbf({Sj};;g_l) is fully determined by the symbols

Soy -y St—d—1, We can write

X, — X, =X, — E[X/|S¢_4, - - -, So],
=X — ¢f({3j};;g_l)
~E[x - el ({s3557)

EXt — [E[Xt|St,d, e

St—d;~-'7SO:|7

780] = Xh (37)

From (31) and Lemma 1, the statistics of {X,}~, and
{5:},5¢ are independent of the controller 8. By (37), so too
is the process {X; — X;},~0, and thus the last sum in (36)
may be ignored when opzimizing over 8. That is,

T+1

inf J, = inf{J,} + ; [E{)Z;th}

where

T
Jy = E[XppyQraXrn| + > E[XQX + URU] (38)

t=0
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Now, define Z; := E[X;11|Sit1-ds- -+, S0] — E[Xit1|Si—as
..,So] and observe that
Xi1 = E[Xe1|Si—ay - - -, So] + Z¢
= [E[AXt =+ BU; + Vt|St—d7 s aSO} + Z
=AX, + BU, + Z, (39)
since U; is fully determined by S;_4,...,So, and V; is
independent of S, . .. Sp. Furthermore
_ & t—d
Z=L [Xt+1*¢t+1 ({Sj}]':()) [St+1—ds - - - 5 So]
y —d
— ElXe = oy (153)26) 5 - S0,
=EXinlSiva-d; - - -5 So] —E[Xe41[Si—ay - - -, So].  (40)

By virtue of (31) and Lemma 1, {Z;}, is independent of
the controller . Thus, for fixed 7/, Bptimizing over the
controller reduces to minimizing the expected quadratic
cost (38) for the fully observed auxiliary system (39).
However, although {Z},. , is uncorrelated, it is not
independent. Consequently, the standard solut