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ABSTRACT

Managing Network Function (NF) service chains requires careful
system resource management. We propose NFVnice, a user space
NF scheduling and service chain management framework to pro-
vide fair, efficient and dynamic resource scheduling capabilities on
Network Function Virtualization (NFV) platforms. The NFVnice
framework monitors load on a service chain at high frequency
(1000Hz) and employs backpressure to shed load early in the ser-
vice chain, thereby preventing wasted work. Borrowing concepts
such as rate proportional scheduling from hardware packet sched-
ulers, CPU shares are computed by accounting for heterogeneous
packet processing costs of NFs, I/O, and traffic arrival character-
istics. By leveraging cgroups, a user space process scheduling ab-
straction exposed by the operating system, NFVnice is capable of
controlling when network functions should be scheduled. NFVnice
improves NF performance by complementing the capabilities of the
OS scheduler but without requiring changes to the OS’s schedul-
ing mechanisms. Our controlled experiments show that NFVnice
provides the appropriate rate-cost proportional fair share of CPU
to NFs and significantly improves NF performance (throughput
and loss) by reducing wasted work across an NF chain, compared
to using the default OS scheduler. NFVnice achieves this even for
heterogeneous NFs with vastly different computational costs and
for heterogeneous workloads.
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1 INTRODUCTION

Network Function Virtualization (NFV) seeks to implement network
functions and middlebox services such as firewalls, NAT, proxies,
deep packet inspection, WAN optimization, etc., in software in-
stead of purpose-built hardware appliances. These software based
network functions can be run on top of commercial-off-the-shelf
(COTS) hardware, with virtualized network functions (NFs). Net-
work functions, however, often are chained together [20], where a
packet is processed by a sequence of NFs before being forwarded
to the destination.

The advent of container technologies like Docker [34] enables
network operators to densely pack a single NFV appliance (VM/bare
metal) with large numbers of network functions at runtime. Even
though NFV platforms are typically capable of processing packets
at line rate, without efficient management of system resources in
such densely packed environments, service chains can result in
serious performance degradation because bottleneck NFs may
drop packets that have already been processed by upstream NFs,
resulting in wasted work in the service chain.

NF processing has to address a combination of requirements.
Just as hardware switches and routers provide rate-proportional
scheduling for packet flows, an NFV platform has to provide a fair
processing of packet flows. Secondly, the tasks running on the NFV
platform may have heterogeneous processing requirements that OS
schedulers (unlike hardware switches) address using their typical
fair scheduling mechanisms. OS schedulers, however, do not treat
packet flows fairly in proportion to their arrival rate. Thus, NF pro-
cessing requires a re-thinking of the system resource management
framework to address both these requirements. Moreover, standard
OS schedulers: a) do not have the right metrics and primitives to
ensure fairness between NFs that deal with the same or different
packet flows; and b) do not make scheduling decisions that account
for chain level information. If the scheduler allocates more process-
ing to an upstream NF and the downstream NF becomes overloaded,
packets are dropped by the downstream NF. This results in ineffi-
cient processing and wasting the work done by the upstream NF.
OS schedulers also need to be adapted to work with user space
data plane frameworks such as Intel’s DPDK [1]. They have to be
cognizant of NUMA (Non-uniform Memory Access) concerns of
NF processingand the dependencies among NFs in a service chain.
Determining how to dynamically schedule NFs is key to achieving
high performance and scalability for diverse service chains, espe-
cially in a scenario where multiple NFs are contending for a CPU
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a single machine (as is often the case with several proposed approaches [23, 52]).


https://doi.org/10.1145/3098822.3098828
https://doi.org/10.1145/3098822.3098828

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

Hardware routers and switches that employ sophisticated sched-
uling algorithms such as rate proportional scheduling [40, 50] have
predictable performance per-packet, because processing resources
are allocated fairly to meet QoS requirements and bottlenecks are
avoided by design. However, NFV platforms are necessarily differ-
ent because: a) the OS scheduler does not know a priori, the capacity
or processing requirements for each NF; b) an NF may have variable
per-packet costs (e.g., some packets may trigger DNS lookup, which
are expensive to process, and others may just be an inexpensive
header match). With NFV service chains, there is a need to be aware
of the computational demands for packet processing. There can
also be sporadic blocking of NFs due to I/O (read/write) stalls.

A further consideration is that routers and switches ‘simply’
drop packets when congested. However, an NF in a service chain
that drops packets can result in considerable wasted processing at
NFs earlier in the chain. These wasted resources could be gainfully
utilized by other NFs being scheduled on the same CPU core to
process other packet flows.

We posit that a scheduling framework for NFV service chains
has to simultaneously account for both task level scheduling on
processing cores and packet level scheduling. This combined prob-
lem is what poses a challenge: When you get a packet, you have to
decide which task has to run, and also which packets to process, and
for how long.

To solve these problems we propose NFVnice, an NFV manage-
ment framework that provides fair and efficient resource allocations
to NF service chains. NFVnice focuses on the scheduling and con-
trol problems of NFs running on shared CPU cores, and considers
a variety of realistic issues such as bottlenecked NFs in a chain,
and the impact of NFs that perform disk I/O accesses, which natu-
rally complicate scheduling decisions. NFVnice makes the following
contributions:

o Automatically tuning CPU scheduling parameters in order
to provide a fair allocation that weighs NFs based on both
their packet arrival rate and the required computation cost.

e Determining when NFs are eligible to get a CPU share and
when they need to yield the CPU, entirely from user space,
improving throughput and fairness regardless of the kernel
scheduler being used.

o Leveraging the scheduling flexibility to achieve backpres-
sure for service chain-level congestion control, that avoids
unnecessary packet processing early in a chain if the packet
might be dropped later on.

e Extending backpressure to apply not only to adjacent NFs
in a service chain, but for full service chains and managing
congestion across hosts using ECN.

e Presenting a scheduler-agnostic framework that does not
require any operating system or kernel modifications.

We have implemented NFVniceon top of OpenNetVM [54], a
DPDK-based NFV platform that runs NFs in separate processes
or containers to facilitate deployment. Our evaluation shows that
NFVnice can support different kernel schedulers, while substan-
tially improving throughput and providing fair CPU allocation
based on processing requirements. In controlled experiments using
the vanilla CFS BATCH [37] scheduler, NFVnice reduces packet
drops from 3Mpps (million packets per second) to just 0.01Mpps
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during overload conditions. NFVnice provides performance isola-
tion for TCP flows when there are competing UDP flows, improving
throughput of TCP flows from 30Mbps to 4Gbps, without penal-
izing UDP flows, by avoiding wasted work. While this is scenario
dependent, we believe the performance benefits of NFVnice are
compelling. Further, our evaluations demonstrate that NFVnice,
because of the dynamic backpressure, is resilient to the variability
in packet-processing cost of the NFs, yielding considerable improve-
ment in throughput even for the large service chains (including
chains that span multiple cores).

2 BACKGROUND AND MOTIVATION
2.1

The middleboxes that are being deployed in industry are diverse
in their applications as well as in their complexity and processing
requirements. ETSI standards [13] show that NFs have dramatically
different processing and performance requirements. Measurements
of existing NFs show the variation in CPU demand and per packet
latency: some NFs have per-core throughput in the order of million
packets per second (Mpps), e.g., switches; others have throughputs
as low as a few kilo pps, e.g., encryption engines.

Fair Scheduling: Determining how to allocate CPU time to
network functions in order to provide fair and efficient chain per-
formance despite NF diversity is the focus of our work. Defining
“fairness” when NFs may have completely different requirements
or behavior can be difficult. A measure of fairness that we leverage
is the work on Rate Proportional Servers [40, 50], that apportion
resources (CPU cycles) to NFs based on the combination of an NF’s
arrival rate and its processing cost. Intuitively, if either one of these
factors is fixed, then we expect its CPU allocation to be proportional
to the other metric. For example, if two NFs have the same compu-
tation cost but one has twice the arrival rate, then we want it to
have twice the output rate relative to the second NF. Alternatively,
if the NFs have the same arrival rate, but one requires twice the
processing cost, then we expect the heavy NF to get about twice
as much CPU time, resulting in both NFs having the same output
rate. This definition of fairness can of course be supplemented with
a prioritization factor, allowing an understandable and consistent
way to provide differentiated service for NFs.

Unfortunately, standard CPU schedulers do not have sufficient
information to allocate resources in a way that provides rate-cost
proportional fairness. CPU schedulers typically try to provide fair
allocation of processing time, but if computation costs vary between
NFs this cannot provide rate-cost fairness. Therefore, NFVnice must
enhance the scheduler with more information so that it can appro-
priately allocate CPU time to provide correctly weighted alloca-
tions.

We adopt the notion of rate-cost proportional fairness for two
fundamental reasons: i) it not only seeks to maximize the through-
put for a given load across NFs, but even in the worst case scenarios
(highly uneven and high overload across competing NFs), it en-
sures that all competing NFs get a minimal CPU share necessary
to progress the NFs; and ii) the rate-cost proportional fairness is
general and flexible, so that it can be tuned to meet the QoS policies
desired by the operator. Further, the approach ensures that when
contending NFs include malicious NFs (those that fail to yield), or
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Figure 1: The scheduler alone is unable to provide fair resource allocations that account for processing cost and load.

misbehaving NFs (get stuck in a loop making no progress), such
NFs do not consume the CPU excessively, impeding the progress
of other NFs. While the Linux default scheduler addresses this
through the notion of a virtual run-time for each running task, we
fine-tune that capability to provide the correct share of the CPU
for an NF, rather than just allocating an equal share of the CPU for
each contending NF.

Efficient Chaining: Beyond simply allocating CPU time fairly
to NFs on a single core, the combination of NFs into service chains
demands careful resource management across the chain to mini-
mize the impact of bottlenecks. Processing a packet only to have it
dropped from a subsequent bottleneck’s queue is wasteful, and a
recipe for receive livelock [27, 36].

When an NF (whether a single NF or one in a service chain)
is overloaded, packet drops become inevitable, and processing re-
sources already consumed by those packets are wasted. For respon-
sive flows, such as a TCP flow, congestion control and avoidance
using packet drop methods such as RED, REM, SFQ, CSFQ [14, 15, 28,
51] and feedback with Explicit Congestion Notification (ECN) [42]
can cause the flows to adapt their rates to the available capacity
on an end-to-end basis. However, for non-responsive flows (e.g.,
UDP), a local, rapidly adapting, method is backpressure, which can
propagate information regarding a congested resource upstream
(i-e., to previous NFs in the chain). NFVnice allows the upstream
node to determine either to propagate the backpressure information
further upstream or drop packets, thus minimizing wasted work. It
is important however to ensure that effects such as head-of-the-line
blocking or unfairness do not creep in as a result.

2.2 Existing OS schedulers are ill-suited for
NFV deployment

Linux provides several different process schedulers, with the Com-
pletely Fair Scheduler (CFS) [37] being the default since kernel
2.6.23. In this work we focus on three schedulers: i) CFS Normal, ii)
CFS Batch, and Round Robin.

The CFS class of schedulers use a nanosecond resolution timer
to provide fine granularity scheduling decisions. Each task in CFS
maintains a monotonically increasing virtual run-time which de-
termines the order and quantum of CPU assignment to these tasks.
The time-slice is not fixed, but is determined relative to the run-time
of the contending tasks in a time-ordered red-black tree [9, 19]. The
task with the smallest run-time (the left most node in the ordered
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red-black tree) is scheduled to run until either the task voluntarily
yields, or consumes the allotted time-slice. If it consumes the allo-
cated time-slice, it is re-inserted into the red-black tree based on its
cumulative run-time consumed so far. The CFS scheduler is analo-
gous to weighted fair queueing (WFQ) scheduling [10, 53]. Thus,
CFS ensures a fair proportion of CPU allocation to all the tasks.
The CFS Batch variant has fewer timer interrupts than normal CFS,
leading to a longer time quantum and fewer context switches, while
still offering fairness. The Round Robin scheduler simply cycles
through processes with a 100 msec time quantum, but does not
attempt to offer any concept of fairness.

To explore the impact of these schedulers on NFV applications
we consider a simple deployment with three NF processes sharing
a CPU core. The NFs run atop a DPDK-based NFV platform that
efficiently delivers packets to the NFs. We look at two workloads:
1) equal offered load to all NFs of 5 Mpps; 2) unequal offered load,
with NF1 and NF2 getting 6 Mpps, and NF3 getting 3 Mpps. We also
consider the case where NFs have different computation costs. As
described above, the desirable behavior is for NFs to be allocated
resources in proportion to both their arrival rate and processing
requirements.

Table 1: Context Switches for Homogeneous NFs

Even Load Uneven Load
SCHED_ SCHED_ SCHED_ SCHED_ SCHED_ SCHED_
NORMAL BATCH RR NORMAL BATCH RR
nve nv nve nve nve nve
NF ii]v/: swch cc;v;: cswch c;]v;/; swch ishv/v; swch Ccsh‘;: swch Ccsh‘)z swch
/s /s /s /s /s /s
NF1 0 339 0 333 266 3 0 3544 0 527 247 5
NF2 0 334 0 333 265 4 0 6205 0 479 246 5
NF3 0 333 0 334 266 3 9753 9 1007 0 248 3
Table 2: Context Switches for Heterogeneous NFs
Even Load Uneven Load
SCHED_ SCHED_ SCHED_ SCHED_ SCHED_ SCHED_
NORMAL BATCH RR NORMAL BATCH RR
nve nv nve nve nve nve
NF (;S}y; swch i;v/: cswch j‘vf; swch jy; swch ‘j:: swch ([::shv;/; swch
/s /s /s /s /s /s
NF1 0 33785 0 504 198 7 0 38585 0 503 85 10
NF2 0 32214 1 505 204 2 0 41089 4 496 92 1
NF3 | 65796 107 1010 8 206 0 79479 85 1004 4 93 0

In our first test, illustrated in Figure 1a, all 3 NFs have equal
computation cost (roughly 250 CPU cycles per packet). With an
even load sent to all NFs, we find that the three schedulers per-
form about the same, with an equal division of CPU time leading
to equal throughputs for each NF. However, reducing the traffic
to NF3 by half shows the different behaviour of the schedulers:
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while the CFS-based schedulers continue to evenly divide the CPU
(CFS’s definition of fairness), the RR scheduler allocates CPU time
in proportion to the arrival rate, which better matches our notion
of rate proportional fairness. This happens because RR uses a time
quantum that is substantially longer than an NF ever needs, so NFs
which yield the CPU earlier (i.e., because they have fewer packets
to process) receive less CPU time and thus have lower through-
put. Note the context switches (shown in Table 1) in RR case are
predominantly voluntary context switches, while the CFS based
schedulers incur non-voluntary context switches.

We next consider heterogeneous NFs (computation costs: NF1=
500, NF2=250 and NF3=50 CPU cycles) with even or uneven load.
Figure 1b shows that when arrival rates are the same, none of the
schedulers are able to provide our fairness goal—an equal output
rate for all three NFs. CFS Normal always apportions CPU equally,
regardless of offered load and NF processing cost, so the lighter
weight NF3 gets the highest throughput. The RR scheduler is the
opposite since it gives each NF an equal chance to run, but does
not limit the time the NF runs for. The CFS Batch scheduler is
in between these extremes since it seeks to provide fairness, but
over longer time periods. Notably, the Batch scheduler provides
NF3 almost the same throughput as Normal CFS, despite allocating
it substantially less CPU. The reason for this is that Normal CFS
can incur a very large number of context switches due to its goal
of providing very fine-grained fairness. Since Batch mode reduces
scheduler preemption, it has substantially fewer non-voluntary con-
text switches—reducing from 65K to 1K per second—as illustrated
in the Table 2. While RR also has low context switch overhead,
it allows heavy weight NFs to greedily consume the CPU, nearly
starving NF3.

These results show that just having the Linux scheduler handle
scheduling NFs has undesirable results as by itself it is unable to
adapt to both varying per-packet processing requirements of NFs
and packet arrival rates. Moreover, it is important to avoid the
overheads of excessive context switches. All of these scheduling
requirements must be met on a per-core basis, while accounting
for the behaviour of chains spanning multiple cores or servers.

3 DESIGN AND IMPLEMENTATION

In an NFV platform, at the top of the stack are one or more net-
work functions that must be scheduled in such a way that idle
work (i.e., while waiting for packets) is minimized and load on
the service chain is shed as early as possible so as to avoid wasted
work. However, the operating system’s process scheduler that lies
at the bottom of the software stack remains completely application
agnostic, with its goal of providing a fair share of system resources
to all processes. As shown in the prior section, the kernel sched-
uler’s metrics for scheduling are along orthogonal dimensions to
those desired by the network functions. NFVnice bridges the gap
by translating the scheduling requirements at the NFV application
layer to a format consumable by the operating system.

The design of NFVnice centers around the concept of assisted
preemptive scheduling, where network functions provide hints
to the underlying OS with regard to their utilization. In addition
to monitoring the average computation time of a network func-
tion per packet, NFVnice needs to know when NFs in a chain are
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overloaded, or blocked on packet/disk I/O. The queues between
NFs in a service chain serve as a good indicator of pending work
at each NF. To facilitate the process of providing these metrics
from the NF implementation to the underlying operating system,
NFVnice provides network function implementations with an ab-
straction library called libnf. In addition to the usual tasks such
as efficient reading/writing packets from/to the network at line
rate and overlapping processing with non-blocking asynchronous
1/0O, libnf co-ordinates with the NFVnice platform to schedule/de-
schedule a network function as necessary.

Modifying the OS scheduler to be aware of various queues in
the NFV platform is an onerous task that might lead to unneces-
sary maintenance overhead and potential system instability. One
approach is to change the priority of the NF based on the queue
length of packet at that NF. This will have the effect of increasing
the number of CPU cycles provided to that NF. This will require
the change to occur frequently as the queue length varies. The
change requires a system call, which consumes CPU cycles and
adds latency. In addition, with service chains, as the queue at an
upstream NF builds, its priority has to be raised to process packets
and deliver to a queue at the downstream NF. Then, the down-
stream NF’s priority will have to be raised. We believe that this
can lead to instability because of frequent changes and the delay
involved in effecting the change. This only gets worse with complex
service chains, where an NF is both an upstream NF for one service
chain and a downstream NF for another service chain. Instead,
NFVnice leverages cgroups [5, 33], a standard user space primitive
provided by the operating system to manipulate process scheduling.
NFVnice monitors queue sizes, computation times and I/O activities
in user space with the help of libnf and manipulates scheduling
weights accordingly.

3.1 System Components

Figure 2 illustrates the key components of the NFVnice platform.
We leverage DPDK for fast user space networking [1]. Our NFV
platform is implemented as a system of queues that hold packet de-
scriptors pointing to shared memory regions. The NF Manager runs
on a dedicated set of cores and is responsible for ferrying packet
references between the NIC queues and NF queues in an efficient
manner. When packets arrive to the NIC, Rx threads in the NF
Manager take advantage of DPDK’s poll mode driver to deliver the
packets into a shared memory region accessible to all the NFs. The
Rx thread does a lookup in the Flow Table to direct the packet to the
appropriate NF. Once a flow is matched to an NF, packet descriptors
are copied into the NF’s receive ring buffer and the Wakeup sub-
system brings the NF process into the runnable state. After being
processed by an NF, the NF Manager’s Tx Threads move packets
through the remainder of the chain. This provides zero-copy packet
movement.

Service chains can be configured during system startup using
simple configuration files or from an external orchestrator such as
an SDN controller. When an NF finishes with a packet, it enqueues
it in its Tx queue, where it is read by the manager and redirected
to the Rx queue of the next NF in the chain. The NF Manager also
picks up packets from the Tx queue of the last NF in the chain, and
sends it out over the network.
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Figure 2: NFVnice Building Blocks

We have designed NFVnice to provide high performance process-
ing of NF service chains. The NF Manager’s scheduling subsystem
determines when an NF should be active and how much CPU time
it should be allocated relative to other NFs. The backpressure sub-
system provides chain-aware management, preventing NFs from
spending time processing packets that are likely to be dropped
downstream. Finally, the I/O interface facilitates efficient asynchro-
nous storage access for NFs.

System Management and NF deployment: The NF Manager s
(Rx, Tx and Monitor) threads are pinned to separate dedicated
cores. The number of Rx, Tx and monitor threads are configurable
(C-Macros), to meet system needs, and available CPU resources.
Similarly, the maximum number of NFs and maximum chain length
can be configured. NFVnice allows NFs and NF service chains to be
deployed as independent processes or Docker containers which are
linked with libnflibrary. libnfexports a simple, minimal interface (9
functions, 2 callbacks and 4 structures), and both the NF Manager
and libnfleverage the DPDK libraries (ring buffers, timers, memory
management). We believe developing or porting NFs or existing
docker containers can be reasonably straightforward. For example,
a simple bridge NF or a basic monitor NF is less than 100 lines of C
code.

3.2 Scheduling NFs

Each network function in NFVnice is implemented inside its own
process (potentially running in a container). Thus the OS scheduler
is responsible for picking which NF to run at any point in time. We
believe that rather than design an entirely new scheduler for NFV,
it is important to leverage Linux’s existing scheduling framework,
and use our management framework in user space to tune any
of the stock OS schedulers to provide the properties desired for
NFV support. In particular, we exploit the CFS Batch scheduler,
but NFVnice provides substantially similar benefits to each of the
other Linux kernel schedulers. Figure 3 shows the NFVnice sched-
uling that makes the OS scheduler be governed by NF Manager via
cgroups, and ultimately assigns running NFs to shared CPU cores.
The detailed description of the figure is in the Sections 3.2 and 3.3.

Activating NFs: NFs that busy wait for packets perform very
poorly in a shared CPU environment. Thus it is critical to design the
NF framework so that NFs are only activated when there are packets
available for them to process, as is done in NFV platforms such as
netmap [43] and ClickOS [32]. However, these systems provide only
a relatively simple policy for activating an NF: once one or more
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Figure 3: NF Scheduling and Backpressure

packets are available, a signal is sent to the NF so that it will be
scheduled to run by the OS scheduler in netmap, or the hypervisor
scheduler in ClickOS. While this provides an efficient mechanism
for waking NFs, neither system allows for more complex resource
management policies, which can lead to unfair CPU allocations
across NFs, or inefficient scheduling across chains.

In NFVnice, NFs sleep by blocking on a semaphore shared with
the NF Manager, granting the management plane great flexibility in
deciding which NFs to activate at a given time. The policy we pro-
vide for activating an NF considers the number of packets pending
in its queue, its priority relative to other NFs, and knowledge of the
queue lengths of downstream NFs in the same chain. This allows
the management framework to indirectly affect the CPU scheduling
of NFs to be fairness and service-chain aware, without requiring
that information be synchronized with the kernel’s scheduler.

Relinquishing the CPU: NFs process batches of packets, decid-
ing whether to keep processing or relinquish the CPU between each
batch. This decision and all interactions with the management layer,
e.g., to receive a batch of packets, are mediated by libnf, which in
turn exposes a simple interface to developers to write their network
function. After a batch of at most 32 packets is processed, libnf will
check a shared memory flag set by the NF Manager that indicates if
it should relinquish the CPU early (e.g., as a result of backpressure,
as described below). If the flag is not set, the NF will attempt to pro-
cess another batch; if the flag has been set or there are no packets
available, the NF will block on the semaphore until notified by the
Manager. This provides a flexible way for the manager to indicate
that an NF should give up the CPU without requiring the kernel’s
CPU scheduler to be NF-aware.

CPU Scheduler: Since multiple NF processes are likely to be
in the runnable state at the same time, it is the operating system’s
CPU scheduler that must determine which to run and for how
long. In the early stages of our work we sought to design a custom
CPU scheduler that would incorporate NF information such as
queue lengths into its scheduling decisions. However, we found
that synchronizing queue length information with the kernel, at
the frequency necessary for NF scheduling, incurred overheads that
outweighed any benefits.

Linux’s CFS Batch scheduler is typically used for long running
computationally intensive tasks because it incurs fewer context
switches than standard CFS. Since NFVnice carefully controls when
individual NF processes are runnable and when they yield the CPU
(as described above), the batch scheduler’s longer time quantum
and less frequent preemption are desirable. In most cases, NFVnice
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Figure 4: Backpressure State Diagram

NFs relinquish the CPU due to policies controlled by the manager,
rather than through an involuntary context switch. This reduces
overhead and helps NFVnice prioritize the most important NF for
processing without requiring information sharing between user
and kernel space.

Assigning CPU Weights: NFVnice provides mechanisms to
monitor a network function to estimate its CPU requirements, and
to adjust its scheduling weight. Policies in the NF Manager can then
dynamically tune the scheduling weights assigned to each process
in order to meet operator specified priority requirements.

The packet arrival rate for a given NF can be easily estimated
by either the NF or the NF Manager. We measure the service time
to process a packet inside each NF using libnf. To avoid outliers
from skewing these measurements (e.g., if a context switch occurs
in the middle of processing a packet), we maintain a histogram of
timings, allowing NFVnice to efficiently estimate the service time
at different percentiles.

For each NF i on a shared core, we calculate load(i) = A; * s, the
product of arrival rate, A, and service time, s. We then find the total
load on each core, such as core m, TotalLoad(m) = Y1, load(i),
and assign cpu shares for NF; on corey, following the formula:

load(i)
TotalLoad(m)

This provides an allocation of CPU weights that provides rate
proportional fairness to each NF. The Priority; parameter can be
tuned if desired to provide differential service to NFs. Tuning pri-
ority in this way provides a more intuitive level of control than
directly working with the CPU priorities exposed by the scheduler
since it is normalized by the NF’s load.

Shares; = Priority; *

3.3 Backpressure

A key goal of NFVnice is to avoid wasting work, i.e., preventing an
upstream NF from processing packets if they are just going to be
dropped at a downstream NF later in the chain that has become
overloaded. We achieve this through backpressure, which ensures
bottlenecks are quickly detected while minimizing the effects of
head of line blocking.

Cross-Chain Pressure: The NF Manager is in an ideal position
to observe behavior across NFs since it assists in moving packets
between them. When one of the NF Manager’s TX threads detects
that the receive queue for an NF is above a high watermark (HIGH_
WATER_MARK) and queuing time is above threshold, then it exam-
ines all packets in the NF’s queue to determine what service chain
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Figure 5: Overloaded NFs (in bold) cause back pressure at the
entry points for service chains A, C, and D.

they are a part of. NFVnice then enables service chain-specific packet
dropping at the upstream NFs. NF Manager maintains states of each
NF, and in this case, it moves the NF’s state from backpressure watch
list to packet throttle as shown in Figure 4. When the queue length
becomes less than a low watermark (LOW_WATER_MARK), the
state moves to clear throttle, then again moves to the watch list if
the queue length goes beyond the high mark.

The backpressure operation is illustrated in Figure 5, where four
service chains (A-D) pass through several different NFs. The bold
NFs (3 and 5) are currently overloaded. The NF Manager detects this
and applies back pressure to flows A, C, and D. This is performed
upstream where those flows first enter the system, minimizing
wasted work. Note that backpressure is selective based on service
chain, so packets for service chain B are not affected at all. Service
chains can be defined at fine granularity (e.g., at the flow-level) in
order to minimize head of line blocking.

This form of system-wide backpressure offers a simple mecha-
nism that can provide substantial performance benefits. The back-
pressure subsystem employs hysteresis control to prevent NFs
rapidly switching between modes. Backpressure is enabled when
the queue length exceeds a high watermark and is only disabled
once it falls below the low watermark.

Local Optimization and ECN: NFVnice also supports simple,
local backpressure, i.e., an NF will block if its output TX queue
becomes full. This can happen either because downstream NFs are
slow, or because the NF Manager TX Thread responsible for the
queue is overloaded. Local backpressure is entirely NF-driven, and
requires no coordination with the manager, so we use it to handle
short bursts and cases where the manager is overloaded.

We also consider the fact that an NFVnice middlebox server
might only be one in a chain spread across several hosts. To facili-
tate congestion control across machines, the NF Manager will also
mark the ECN bits in TCP flows in order to facilitate end-to-end
management. Since ECN works at longer timescales, we monitor
queue lengths with an exponentially weighted moving average and
use that to trigger marking of flows following [42].

3.4 Facilitating I/O

A network function could block when its receive ring buffer is
empty or when it is waiting to complete I/O requests to the un-
derlying storage. In both cases, NF implementations running on
the NFVnice platform are expected to yield the CPU, returning
any unused CPU cycles back to the scheduling pool. In case of
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// Read the next packet from the receive ring buffer
packet_descriptor* libnf_read_pkt();

// Output the processed packet to specified destination
int libnf_write_pkt(packet_descriptorx);

// Enqueue request to read from storage. Flow specific data
can be stored in context

int libnf_read_data(int fd, void =*buf,
size_t size, size_t offset,
void (*callback_fn)(void ), void *context);

// Enqueue request to write to storage. Flow specific data
can be stored in context

int libnf_write_data(int fd, void xbuf,
size_t size, size_t offset,
void (*callback_fn)(void x), void *context);

Figure 6: libnf API exposed to network function implemen-
tations.

I/O, NF implementations should use asynchronous I/O to overlap
packet processing with background I/O to maintain throughput.
NFVnice provides a simple library called libnfthat abstracts such
complexities from the NF implementation.

The libnflibrary exposes a simple set of APIs that allow the
application code to read/write packets from the network, and read-
/write data from storage. The APIs are shown in Listing 6. If the
receive ring buffer is empty while calling the libnf_read_pkt
API, libnf notifies the NF manager and blocks the NF until further
packets are available in the buffer.

In case of I/0, an NF implementation uses the 1ibnf_read_data
and libnf_write_data APIs. I/O requests can be queued along
with a callback function that runs in a separate thread context. Using
batched asynchronous I/O with double buffering, libnf enables the
NF implementation to put the processing of one or more packets
on hold, while continuing processing of other packets unhindered.

Batching reads and writes allows an NF to continue execution
without waiting for I/O completion. The size of the batches and the
flush interval is tunable by the NF implementation. Double buffering
enables libnf'to service one set of I/O requests asynchronously while
the other buffer is filled up by the NF. When both buffers are full,
libnf suspends the execution of the NF and yields the CPU.

3.5 Optimizations

Separating overload detection and control. Since the NFV plat-
form [23] must process millions of packets per second to meet line
rates, we separate out overload detection from the control mecha-
nisms required to respond to it. The NF Manager’s Tx threads are
well situated to detect when an NF is becoming backlogged as it is
their responsibility to enqueue new packets to each NF’s Tx queue.
Using a single DPDK’s enqueue interface, the Tx thread enqueues a
packet to a NF’s Rx queue if the queue is below the high watermark,
while getting feedback about the queue’s state in the return value.
When overload is detected, an overload flag is set in the meta data
structure related to the NF.
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The control decision to apply backpressure is delegated to th
NF Manager’s Wakeup thread. The Wakeup thread scans through
the list of NFs classifying them into two categories: ones where
backpressure should be applied and ones that need to be woken
up. This separation simplifies the critical path in the Tx threads
and also provides some hysteresis control, since a short burst of
packets causing an NF to exceeds its threshold may have already
been processed by the time the Wakeup thread considers it for
backpressure.

Separating load estimation and CPU allocation. The load
on an NF is a product of its packet arrival rate and the per-packet
processing time. The scheduler weight is calculated based on the
load and the cgroup’s weights for the NF are updated. Since chang-
ing a weight requires writing to the Linux sysfs, it is critical that
this be done outside of the packet processing data path. libnfmerely
collects samples of packet processing times, while the NF Manager
computes the load and assigns the CPU shares using cgroup virtual
file system.

The data plane (libnf) samples the packet processing time in
a lightweight fashion every millisecond by observing the CPU
cycle counter before and after the NF’s packet handler function is
called. We chose sampling because measuring overhead for each
packet using the CPU cycle counters results in a CPU pipeline
flush [3], resulting in additional overhead. The samples are stored in
a histogram, in memory shared between libnfand the NF Manager.

The processing time samples produced by each NF are stored in
shared memory and aggregated by the NF Manager. Not all packets
incur the same processing time, as some might be higher due to
1/0 activity. Hence, NFVnice uses the median over a 100ms moving
window as the estimated packet processing time of the NF. Every
millisecond, the NF Manager calculates the load on each NF using
its packet arrival rate and the estimated processing time. Every
10ms, it updates the weights used by the kernel scheduler.

4 EVALUATION
4.1 Testbed and Approach

Our experimental testbed has a small number of Intel(R) Xeon(R)
CPU E5-2697 v3 @ 2.60GHz servers, 157GB memory, running
Ubuntu SMP Linux kernel 3.19.0-39-lowlatency. Each CPU has dual-
sockets with a total of 56 cores. For these experiments, nodes were
connected back-to-back with dual-port 10Gbps DPDK compatible
NICs to avoid any switch overheads.

We make use of DPDK based high speed traffic generators, Moon-
gen [12] and Pktgen [38] as well as Iperf3 [11], to generate line
rate traffic consisting of UDP and TCP packets with varying num-
bers of flows. Moongen and Pktgen are configured to generate 64
byte packets at line rate (10Gbps), and vary the number of flows as
needed for each experiment.

We demonstrate NFVnice’s effectiveness as a user-space solution
that influences the NF scheduling decisions of the native Linux
kernel scheduling policies, i.e., Round Robin (RR) for the Real-time
scheduling class, SCHED_NORMAL (termed NORMAL henceforth)
and SCHED_BATCH (termed BATCH) policies in the CFS class.
Different NF configurations (compute, I/0) and service chains with
varying workloads (traffic characteristics) are used. For all the bar
plots, we provide the average, the minimum and maximum values
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Table 3: Packet drop rate per second

NORMAL BATCH RR(1ms) RR(100ms)

Default | NFVnice | Default | NFVnice | Default | NFVnice | Default | NFVnice
NF1 | 3.58M 11.2K 2M 0 0.86M 0 0.53M 0
NF2 | 2.02M 12.3K 0.9M 11.5K 2.92M 12K 0.03M 12K

Table 4: Scheduling Latency and Runtime of NFs

NORMAL BATCH RR(1ms) RR(100ms)
Default | NFVnice | Default | NFVnice | Default | NFVnice | Default | NFVnice
0.002 0.112 0.003 1.613 1.022 0.730 0.924 0.809
657.825 | 128.723 312.703 | 143.754 - - -
0.255
803.185
0.009 0.885
1047.968 | -

measured in ms
NF1-Avg. Delay
NF1-Runtime
NF2-Avg. Delay
NF2-Runtime
NF3-Avg. Delay
NF3-Runtime

0.570 0.612 0.537 0.473

0.045
623.797

0.025
1014.218

0.149
826.203

0.479 0.703 0.646

Default
NFVnice

Only CGroup
Only BKPR

Throughput in Mpps

NORMAL

RR(1ms) RR(100ms)
Figure 7: Performance of NFVnice in a service chain of 3 NFs
with different computation costs

observed across the samples collected every second during the
experiment. In all cases, the NFs are interrupt driven, woken up by
NF manager when the packets arrive while NFs voluntarily yield
based on NFVnice’s policies. Also, when the transmit ring out of
an NF is full, that NF suspends processing packets until room is
created on the transmit ring.

4.2 Overall NFVnice Performance

We first demonstrate NFVnice’s overall performance, both in through-
put and in resource (CPU) utilization for each scheduler type. We
compare the default schedulers to our complete NFVnice system,
or when only including the CPU weight allocation tool (which
we term cgroups) or the backpressure to avoid wasted work at
upstream NFs in the service chain.

4.2.1 NF Service Chain on a Single Core: Here, we first consider
a service chain of three NFs; with computation cost Low (NF1, 120
cycles), Medium (NF2, 270 cycles), and High (NF3, 550 cycles). All
NFs run on a single shared core.

Figure 7 shows that NFVnice achieves an improvement of as
much as a factor of two times in throughput (especially over the RR
scheduler). We separately show the contribution of the cgroups and
backpressure features. By combining these, NFVnice improves the
overall throughput across all three kernel scheduling disciplines.
Table 3 shows the number of packets dropped at either of the up-
stream NFs, NF1 or NF2, after processing (an indication of truly
wasted work). Without NFVnice, the default schedulers drop mil-
lions of packets per second. But with NFVnice, the packet drop
rate is dramatically lower (near zero), an indication of effective
avoidance of wasted work and proper CPU allocation.
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Table 5: Throughput, CPU utilization and wasted work in
chain of 3 NFs on different cores

Default NFVnice
Svc.rate | Drop rate | CPU Util | Svec.rate | Drop rate | CPU Util
(~551(\)If;cles) 5.95Mpps - 100% 0.82Mpps - 11% +3%
NF2 1.18Mpps | 4.76Mpps 100% 0.72Mpps | 150Kpps | 64% +1%
(~2200cycles) | . :
NF3 0.6Mpps | 0.58Mpps 100% 0.6Mpps 70Kpps 100%
(~4500cycles) : ) :
Aggregate 0.6Mpps - 300% 0.6Mpps - 175% +3%

We also gather perf-scheduler statistics for the average schedul-
ing delay and runtime of each of the NFs. From Table 4, we can see
that i) with NFVnice the run-time for each NF is apportioned in a
cost-proportional manner (NF1 being least and NF3 being most),
unlike the NORMAL scheduler that seeks to provide equal alloca-
tions independent of the packet processing costs. ii) the average
scheduling delay with NFVnice for the NFs (that is the time taken
to begin execution once the NF is ready) is lower for the NFs with
higher processing time (which is exactly what is desired, to avoid
making a complex NF wait to process packets, and thus avoiding
unnecessary packet loss). Again this is better than the behaviour
of the default NORMAL or RR schedulers 2 .

Chain-1

Chain-2

Figure 8: Different NF chains (Chain-1 and Chain-2, of
length three), using shared instances for NF1 and NF4.

4.2.2  Multi-core Scalability: We next demonstrate the benefit
of NFVnice with the NFs in a chain across cores, with an NF being
pinned to a separate, dedicated core for that NF. We use these
experiments to demonstrate the benefits of NFVnice, namely: a)
avoiding wasted work through backpressure; and b) judicious re-
source (CPU cycles) utilization through scheduling. When NFs are
pinned to separate cores, there is no specific role/contribution for

B Chain 1 EChain 2 8 7 W CPU Util. % 100
7 ’ 90
Default-NF1 -
NFVnice-NF1 2 80
DefaultNF2 = 70 8
NFVnice-NF2 = 5 60 S
5 =
Default-NF3 2, 50 8
b =
NFVnice-NF3 3 =3
25 | 40 2
Default-NF4 =3 2
NFVnice-NF4 = 30 O
B2
< 20
o 1 2 3 4 5 & 7 8 9 14
10
# Packets processed in Mpps 1 o
Default NFVnice

Figure 9: Multi-core chains: Performance of NFVnice for two
different service chains of 3 NFs (each NF pinned to a differ-
ent core), as shown in Fig. 8.

2Even though, for this experiment, RR(100ms) performs as well as NFVnice, it
performs very poorly with variable per-packet processing costs, as seen in 4.3.1 and
for chains with heterogeneous computation costs, as in 4.3.2 scenarios.
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Table 6: Throughput, CPU utilization and wasted work in
a chain of 3 NFs (each NF pinned to a different core) with
different NF computation costs

Default NFVNice
Svc.Rate Drop CPU Svc.Rate Drop CPU
(pps) Rate Util.% (pps) Rate | i1
(pps) (pps)
NF1 Cha%nl 3.26M 6.498M
(~270cycles) Chain2 3.26M 2.86M | 78.6% +0.4 | 0.583M 0 82.1% £0.5
Aggregate | 6.522M 7.08M
NF2 Chainl 3.26M 6.498M
(~120cycles) Chain2 - ~0 52.8% 1.2 - ~0 58% +0.7
Aggregate | 3.26M 6.498M
NF3 Chainl - -
(~4500cycles) Chain2 0.582M | 2.68M 100% 0 0.582M <100 100% 0
Aggregate | 0.582M 0.582M
NF4 Chainl 3.26M 6.498M
(~300cycles) Chain2 0.582M 0 60% £0.7 0.582M 0 84% £0.7
Aggregate | 3.842M 7.08M

the vanilla OS schedulers, and for such an experiment we use the
default scheduler NORMAL).

First, we consider the chain of 3 NFs, NF1 (Low, 550 cycles), NF2
(Medium, 2200 cycles) and NF3 (High, 4500 CPU cycles). Compared
to the default scheduler NORMAL), NFVnice plays a key role in
avoiding the wasted work and efficiently utilizing CPU cycles. Ta-
ble 5 shows that NFVnice’s CPU utilization by NF1 and NF2 on
their cores is dramatically reduced, going down from 100% to 11%
and 64% respectively, while maintaining the aggregate throughput
(0.6 Mpps). This is primarily because of backpressure ensuring that
the upstream NFs only process the correct amount of packets that
the downstream NFs can consume. Excess packets coming into the
chain are dropped at the beginning of the chain. When we use only
the default NORMAL scheduler by itself, NF1 and NF2 use 100% of
the CPU to process a huge number of packets (the ‘service rate’ in
the Table 5), only to be discarded at the downstream NF3.

We now consider two different service chains using 4 cores in the
system. Chain-1 has three NFs: NF1 (270 cycles), NF2 (120 cycles)
and NF4 (300 cycles) running on 3 different cores. Chain-2 comprises
NF1, NF3(4500 cycles) and NF4. The same instances of NF1 and
NF4 are part of both chain-1 and chain-2 as shown in Figure 8.
Moongen generates 64-byte packets at line rate, equally splitting
them between two flows that are assigned to chain-1 and chain-2.
Table 6 shows that in the Default case NORMAL scheduler), NF1
processes almost an equal number of packets for chain-1 and chain-
2. However, for chain-2, the downstream NF3 discards a majority
of the packets processed by NF1. This results not only in wasted
work, but it also adversely impacts the throughput of chain-1. On
the other hand, with NFVnice, backpressure has the upstream NF1
process only the appropriate number of packets of chain-2 (which
has its bottleneck at the downstream NF, NF3). This frees up the
upstream NF1 to use the remaining processing cycles to process
packets from chain-1. NFVnice improves the throughput of chain-1
by factor of 2. At the same time, it maintains the throughput of
chain-2 at its bottleneck (NF3) rate of 0.6Mpps. Overall, NFVnice not
only avoids wasted work, but judiciously allocates CPU resources
(at upstream NFs) proportionate to the chain’s bottleneck resource
capacity as shown in the Figure 9.

4.3 Salient Features of NFVnice

4.3.1 Variable NF packet processing cost. We now evaluate the
resilience of NFVnice to not only heterogeneity across NFs, but also
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Figure 10: Performance of NFVnice in a service chain of
3 NFs with different computation costs and varying per
packet processing costs.

variable packet processing costs within an NF. We use the same
three-NF service chain used in 4.2.1, but modify their processing
costs. Packets of the same flow have varying processing costs of 120,
270 or 550 cycles at each of the NFs. Packets are classified as having
one of these 3 processing costs at each of the NFs, thus yielding 9
different variants for the total processing cost of a packet across the
3 -NF service chain. Figure 10 shows the throughput for different
schedulers. With the Default scheduler, the throughput achieved
differs considerably compared to the case with fixed per-packet
processing costs as seen in Figure 7. For the Default scheduler,
the throughput degrades considerably for the vanilla coarse time-
slice schedulers (BATCH and RR(100ms)), while the NORMAL and
RR(1ms) schedulers achieve relatively higher throughputs. When
examining the throughput with only the CPU weight assignment,
CGroup, we see improvement with the BATCH scheduler, but not as
much with the NORMAL scheduler. This is because the variation in
per-packet processing cost of NFs result in an inaccurate estimate of
the NF’s packet-processing cost and thus an inappropriate weight
assignment and CPU share allocation. This inaccuracy also causes
NFVnice (which combines CGroup and backpressure) to experience
a marginal degradation in throughput for the different schedulers.
Backpressure alone (the Only BKPR case), which does not adjust the
CPU shares based on this inaccurate estimate is more resilient to the
packet-processing cost variation and achieves the best (and almost
the same) throughput across all the schedulers. NFVnice gains
this benefit of backpressure, and therefore, in all cases NFVnice’s
throughput is superior to the vanilla schedulers. We could mitigate
the impact of variable packet processing costs by profiling NFs
more precisely and frequently, and averaging the processing over
a larger window of packets. However, we realize that this can be
expensive, consuming considerable CPU cycles itself. This is where
NFVnice’s use of backpressure helps overcome the penalty from
the variability, getting better throughput and reduced packet loss
compared to the default schedulers.

4.3.2  Service Chain Heterogeneity. We next consider a three NF
chain, but vary the chain configuration—(Low, Medium, High);(High,
Medium, Low); and so on for a total 6 cases—so that the location
of the bottleneck NF in the chain changes in each case. Results in
Figure 11 show significant variance in the behaviour of the vanilla
kernel schedulers. NORMAL and BATCH perform similar to each
other in most cases, except for the small differences for the reasons
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Figure 11: Throughput for varying combinations of 3 NF service chain with Heterogeneous computation costs

described earlier in Section 2. We also looked at RR with time slices
of 1ms and 100ms, and their performance is vastly different. For
the small time-slice, performance is better when the bottleneck
NF is upstream, while RR with a larger time-slice performs better
when the bottleneck NF is downstream. This is primarily due to
wasted work and inefficient CPU allotment to the contending NFs.
However, with NFVnice, in almost every case, we can see consider-
able improvements in throughput, for all the schedulers. NFVnice
minimizes the wasted cycles independent of the OS scheduler’s
operational time-slice.

Impact of RR’s Time Slices with NFV: Consider the chain con-
figurations “High-Med-Low” and “Med-High-Low” in Figure 11.
RR(100 ms time slice) performs very poorly, with very low through-
put < 40Kpps. This is due to the ‘Fast-producer, slow-consumer’
situation [44], making the NF with “High” computes hog the CPU
resource. Now, in the default RR scheduler, the packets processed
by this NF would be dequeued by the Tx threads but will be sub-
sequently dropped, as the next NF in the chain does not get an
adequate share of the CPU to process these packets. The upstream
NF that is hogging the CPU has to finish its time slice and the OS
scheduler then causes a involuntary context switch for this “High”
NF. However, with NFVnice, the queue buildup results in generat-
ing a backpressure signal across the chain, forcing the upstream
NF to be evicted ( i.e., triggering a voluntary context switch) from
the CPU as soon as the downstream NFs buffer levels exceed the
high watermark threshold. The upstream NF will not execute till
the downstream NF gets to consume and process its receive buffers.
Thus, NFVnice is able to enforce judicious access to the CPU among
the competing NFs of a service chain. We see in every case in Fig-
ure 11, NFVnice’s throughput is superior to the vanilla scheduler,
emphasizing the point we make in this paper: NFVnice’s design
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Figure 12: Throughput (Mpps) with varying workload mix,
random initial NF for each flow in a 3 NF service chain (ho-
mogeneous computation costs)

can support a number of different kernel schedulers, effectively
support heterogeneous service chains and still provide superior
performance (throughput, packet loss).

4.3.3  Workload Heterogeneity. We next use 3 homogeneous
NF’s with the same compute cost, but vary the nature of the incom-
ing packet flows so that the three NFs are traversed in a different
order for each flow. We increase the number of flows (each with
equal rate) arriving from 1 to 6, as we go from Type 1 to Type 6,
with each flow going through all 3 NFs in a random order. Thus,
the bottleneck for each flow is different. Figure 12, shows that the
native schedulers (first four bars) perform poorly, with degraded
throughput as soon as we go to two or more flows, because of the
different bottleneck NFs. However, NFVnice performs uniformly
better in every case, and is almost independent of where the bot-
tlenecks are for the multiple flows. Moreover, NFVnice provides
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Figure 13: Benefit of Backpressure with mix of responsive
and non-responsive flows, 3 NF chain, heterogeneous com-
putation costs

a substantial improvement and robustness to varying loads and
bottlenecks even across all the schedulers (NORMAL, BATCH, RR
with 1ms or 100 ms slice.)

4.3.4  Performance isolation. It is common to observe that when
there are responsive (TCP) flows that share resources with non-
responsive (UDP) flows, there can be a substantial degradation
of TCP performance, as the congestion avoidance algorithms are
triggered causing it to back-off. This impact is exacerbated in a
software-based environment because resources are wasted by the
non-responsive UDP flows that see a downstream bottleneck, re-
sulting in packets being dropped at that downstream NF. These
wasted resources result in less capacity being available for TCP.
Because of the per-flow backpressure in NFVnice, we are able to
substantially correct this undesirable situation and protect TCP’s
throughput even in the presence of non-responsive UDP.

In this experiment, we generate TCP and UDP flows with Iperf3.
One TCP flow goes through only NF1 (Low cost) and NF2 (Medium
cost) on a shared core. 10 UDP flows share NF1 and NF2 with the
TCP flow, but also go through an additional NF3 (High cost, on a
separate core) which is the bottleneck for the UDP flows - limiting
their total rate to 280 Mbps.

We first start the 1 TCP flow. After 15 seconds, 10 UDP flows start,
but stop at 40 seconds. As soon as the UDP flows interfere with the
TCP flow, there is substantial packet loss without NFVnice, because
NF1 and NF2 see contention from a large amount of UDP packets
arriving into the system, getting processed and being thrown away
at the queue for NF3. The throughput for the TCP flow craters from
nearly 4 Gbps to just around 10-30 Mbps (note log scale), while the
total UDP rate essentially keeps at the bottleneck NF3’s capacity of
280 Mbps. With NFVnice, benefiting from per-flow backpressure,
the TCP flow sees much less impact (dropping from 4 Gbps to about
3.3 Gbps), adjusting to utilize the remaining capacity at NF1 and NF2.
This is primarily due to NFVnice’s ability to perform selective early
discard of the UDP packets because of the backpressure. Otherwise
we would have wasted CPU cycles at NF1 and NF2, depriving the
TCP flow of the CPU. Note that the UDP flows’ rate is maintained at
the bottleneck rate of 280 Mbps as shown in Figure 13 (UDP lines are
one on top of the other). Thus, NFVnice ensures that non-responsive
flows (UDP) do not unnecessarily steal the CPU resources from
other responsive (TCP) flows in an NFV environment.
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4.3.5 Efficient I/O handling by NFVnice. 1t is important for NFs
to be able to perform I/O required by the packet of a flow, while
efficiently continuing to process other flows (e.g., packet monitors,
proxies, etc.). Using Moongen we send 2 flows at line rate. Both
the flows share the same upstream NFs, but only one of the flows
performs I/O i.e., logs the packets to the disk using NFVnice’s I/O
library. Figure 14 compares the aggregate throughput achieved with
and without NFVnice, using the BATCH scheduler in the kernel.
We vary the packet size. NFVnice maintains a higher throughput
consistently, even for small packet sizes. Moreover, NFVnice main-
tains progress on the second flow while I/O is being performed for
packets of the first flow, thus providing better isolation.

4.3.6  Dynamic CPU Tuning and fairness. Dynamic CPU tuning:
NFVnice dynamically adjusts the CPU allocations based on the
packet processing cost and arrival rate for each NF. Two NFs initially
with different computation costs (ratio 1:3) run on the same core,
with MoonGen transmitting a flow each to the two NFs at the same
rate. To demonstrate adaptation, we have the computation cost of
NF1 temporarily increase 3 times(to the same level as NF2) during
the 31 sec. to 60 sec. interval.

Figure 15a has the default NORMAL scheduler evenly allocating
the CPU between NF1 and NF2 regardless of their computation cost
throughout. On the other hand, NFVnice allocates NF2 three times
the CPU as NF1 initially. At t=30s, NFVnice allocates each NF half
of the CPU. And at t=60s, we go back to the original allocation. We
observed that the throughput for the two flows (not shown) is equal
throughout, indicating the capability of NFVnice to dynamically
provide a fair allocation of resources factoring in the heterogeneity
of the NF CPU compute cost.

Fairness measure: We evaluate the fairness in throughput as we
increase the diversity of computation for each of the NFs for default
CFS scheduler and NFVnice. We vary the number of NFs sharing
the core. Each NF has the same packet arrival rate, but different
computation cost. At diversity level 1, we start with a single flow
(uses NF1, compute cost 1). With a diversity level of two, we have 2
flows, flow 1 uses NF1 (compute cost 1), flow 2 uses NF2 (compute
cost 2). At a diversity level of 6, there are 6 NFs, with the ratio
of computation costs of 1:2:5:20:40:60, and one flow each going to
the corresponding NF. At diversity level 6, the NORMAL scheduler
allocates 16.6% of the CPU to each of the NFs, being unaware of
the computation cost of each NF. Thus, the throughput for flow 1 is
1.02 Mpps, while flow 6 is only 0.07 Mpps. With NFVnice, the CPU
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allocated to the lightweight NF is 1%, while the heavyweight NF gets
46%, and all the flows achieve nearly equal throughput 15c). Using
Jain’s fairness index [24], we show that the vanilla scheduler is
dramatically unfair (going down to 0.62) while NFVnice consistently
achieves fair throughout (Jain’s fairness index of 1.0) as shown in
figure 15b).

4.3.7 Supporting longer NF chains. We now see how well NFVnice
can support longer NF service chains. We choose three different
NFs, as in 4.2, and increase the chain length from 1 NF up to a
chain of 10 NFs, including one of the 3 NFs each time. We examine
two cases: (i) all the NFs of the chain are on a single core (denoted
by SC); and (ii) three cores are used, and as the chain length is
increased, the additional NF is placed on the next core in round-
robin fashion (represented by MC). Results are shown in Figure 16.
For the single core, NFVnice achieves higher throughput than the
Default scheduler for longer chains, with the greater improvements
achieved for chain lengths of 3-6. As the chains get longer (>7 NFs
sharing the same core), the improvement with NFVnice is not as
high. For the multiple core case, NFVnice improves throughput
substantially, especially as more NFs are multiplexed on a care (e.g.,
chain lengths > 4), compared to the Default scheduler. Of course,
the improvement with NFVnice will depend on the type of NFs and
their computation costs, for individual use-cases.

4.3.8 Tuning and Overhead Considerations. Tuning NFVnice: To
tune the key parameters of NFVnice, viz., the HIGH_WATER _
MARK and LOW_WATER_MARK, the thresholds for the queue
occupancy in the Rx ring, we measure the throughput, wasted work,
context-switch overheads and achieved Instructions per Cycle (IPC)
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count for different configurations. We use a 3 NF, “Low-Med-High”
service chain, and use Pktgen to generate line rate minimum packet
size traffic. We begin with a fixed ‘margin’ (difference between the
High and Low thresholds). With the margin at 30, we vary the
high threshold. Below 70%, the throughput starts to drop (under-
utilization), while above 80% the number of packet drops at the
upstream NFs increases (insufficient buffering). We then varied the
NF service chain length (from 2 to 6), and computation costs (per
packet processing cost from 100 cycles to 10000 cycles) to see the
impact of setting the water marks. Across all these cases, we ob-
served that a choice of 80% for the HIGH_WATER_MARK worked
‘well’. With the high water mark fixed at 80%, we varied the LOW_
WATER_MARK, by varying the margin. With a very small margin
(1 to 5), packet drops increased, while a margin above 30 degraded
throughput. We chose a margin of 20 because it provided the best
performance across these experiments. We acknowledge that these
watermark levels and thresholds are sensitive to overall path-delay,
chain length and processing costs of the NFs in the chain, and that
these parameters are necessarily an engineering compromise.

Periodic profiling and CPU weight assignment granularity: We
based our frequency of CPU profiling based on the overheads of
rdtsc (observed to be roughly 50 clock cycles) and average time to
write to the cgroup virtual file system (5 u seconds). We discard the
first 10 samples to effectively account for warming the cache and
to eliminate outliers.

5 RELATED WORK

NF Management and Scheduling: In recent years, several NFV plat-
forms have been developed to accelerate packet processing on
commodity servers [4, 21, 23, 32, 43]. There is a growing interest in
managing and scheduling network functions. Many works address
the placement of middleboxes and NFs for performance target or
efficient resource usage [16, 25, 30, 39, 41, 46]. For example, E2 [39]
builds a scalable scheduling framework on top of BESS [21]. They
abstract NF placement as a DAG, dynamically scale and migrate
NFs while keeping flow affinity. NFV-RT [30] defines deadlines
for requests, and places or migrates NFs to provide timing guar-
antees. These projects focus on NF management and scheduling
across cluster scale. Our work focuses on a different scale: how
to schedule NFs on shared cores to achieve fairness when flows
have load pressure. Different from traditional packet scheduling for
fairness on hardware platforms [18, 47, 49, 50], software-based NFs
or middleboxes are more complex, resulting in diversity of packet
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processing costs. Furthermore, different kinds of flow arrival rates
exacerbate the difficulty of fair scheduling.

PSPAT [45] is a recent host-only software packet scheduler.
PSPAT aims to provide a scalable scheduler framework by decou-
pling the packet scheduler algorithm from dispatching packets
to the NIC for high performance. NFVnice considers the orthog-
onal problem of packet processing cost and flow arrival rate to
fairly allocate CPU resources across the NFs. PIFO [48] presents the
packet-in-first-out philosophy distinct from the typical first-in-first-
out packet processing models. We use the insight from this work
to decide whether to accept a packet and queue it for processing
at the intended NF or discard at the time of packet arrival. Then,
the enqueued packets are always processed in order. This approach
of selective early discard yields two benefits: i) it avoids dropping
partially processed (through the chain) packets, thus not wasting
CPU cycles; ii) it avoid CPU stealing and allows CPU cycles to be
judiciously allocated to other contending NFs.

User space scheduling and related frameworks: Works, such as [2, 6],
consider cooperative user-space scheduling, providing very low
cost context switching, that is orders of magnitude faster than reg-
ular Pthreads. However, the drawbacks with such a framework are
two-fold: a) they invariably require the threads to cooperate, i.e.,
each thread must voluntarily yield to ensure that the other threads
get a chance to share the CPU, without which progress of the
threads cannot be guaranteed. This means that the programs that
implement L-threads must include frequent rescheduling points for
each L-thread [2] incurring additional complexity in developing
the NFs. b) As there is no specific scheduling policy (it is just FIFO
based), all the L-threads share the same priority, and are backed
by the same kernel thread (typically pinned to a single core), and
thus lack the ability to perform selective prioritization and the
ability to provide QoS differentiation across cooperating threads.
Nonetheless, NFVnice’s backpressure mechanism can still be effec-
tively employed for such cooperating threads to voluntarily yield
the CPU as necessary. Another approach used by systems such as
E2 [39] and VPP [4] is to host multiple NFs within a shared address
space, allowing them to be executed as function calls in a run to
completion manner by one thread. This incurs very low NUMA
and cross-core packet chaining overheads, but being monolithic, it
is inflexible and impedes the deployment of NFs from third party
vendors.

Congestion Control and Backpressure: Congestion control and back-
pressure have been extensively studied in the past [7, 8, 22, 26, 29,
35]. DCTCP [7] leverages ECN to provide multi-bit feedback to
the end hosts. MQ-ECN [8] enables ECN for tradeoff of both high
throughput and low latency in multi-service multi-queue produc-
tion DCNs (Data Center Network). All of these focus on congestion
control in DCNs. However, in an NFV environment, flows are typi-
cally steered through a service chain. The later congestion is found,
the more resources are wasted. If the end hosts do not enable ECN
support or there are UDP flows, it is especially important for the
NFV platform to gracefully handle high load scenarios in an efficient
and fair way. Using multiple mechanisms (ECN and backpressure),
NFVnice ensures that overload at bottlenecks are quickly detected
in order to avoid congestion and wasted work. Fair Queueing: Or-
thogonal work such as [17, 31], propose to ensure fair sharing of
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network resources among multiple tenants by spreading requests
to multiple processing entities. That is, they distribute flows with
different costs to different processing threads. In contrast, NFVnice
seeks to achieve fairness by scheduling the NFs that process the
packets of different flows appropriately, Thus, a fair share of the
CPU is allocated to each competing NF.

6 CONCLUSION

As the use of highly efficient user-space network I/O frameworks
such as DPDK becomes more prevalent, there is be a growing need
to mediate application-level performance requirements across the
user-kernel boundary. OS-based schedulers lack the information
needed to provide higher level goals for packet processing, such as
rate proportional fairness that needs to account for both NF pro-
cessing cost and arrival rate. By carefully tuning scheduler weights
and applying backpressure to efficiently shed load early in the the
NFV service chain, NFVnice provides substantial improvements in
throughput and drop rate and dramatically reduces wasted work.
This allows the NFV platform to gracefully handle overload scenar-
ios while maintaining efficiency and fairness.

Our implementation of NFVnice demonstrates how an NFV
framework can efficiently tune the OS scheduler and harmoniously
integrate backpressure to meet its performance goals. Our results
show that selective backpressure leads to more efficient alloca-
tion of resources for NF service chains within or across cores, and
scheduler weights can be used to provide rate proportional fairness,
regardless of the scheduler being used.
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