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Abstract—Control of network systems, or network control, is a rapidly developing field of
modern automated control theory. Network control is characterized by a combination of the
classical control theory toolbox (linear systems, nonlinear control, robust control and so on)
and conceptually new mathematical ideas that come primarily from graph theory. Methods of
network control let one solve analysis and synthesis problems for complex systems that arise in
physics, biology, economics, sociology, and engineering sciences. In this survey, we present the
main fields of application for modern theory of network control and formulate its key results
obtained over the last decade.
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1. INTRODUCTION

The wide spread of network systems, understood as a collection of subsystems (nodes) linked by
physical or informational connections, has led to a number of novel control theory problems. Nu-
merous examples of network systems include multiprocessor systems for information transmission
and processing, transportation and logistical networks, high-tech industrial networks, coordinated
control systems for group motion of aerial and underwater vehicles and mobile robots, distributed
control systems for electric circuits, complex crystal lattices and nanostructural objects, neural
networks, networks of genetic and biochemical oscillators, large social groups, and biological for-
mations. One sure sign of the relevance and scientific importance of the problem is the booming
research literature on complex networks and network systems. Surveys, reports, and special issues
of journals have appeared [1-8]. Conferences and seminars have been specifically devoted to control
in network systems [9]. A keyword search in the Web of Science database shows that the number of
papers in refereed journals on this topic has doubled over the last 5-6 years. Search for the keyword
“networks” in the proceedings of the largest control theory conference 2013 IEEE Conference on
Decision and Control (CDC 2013) yields more than 500 papers out of 1270. Finally, four out of ten
most cited papers from the oldest and most prestigious journal in the field of automatic control,
IEEE Transactions on Automatic Control, are papers on network control that have appeared only
about 10 years ago (we will mention these papers below). All of this evidences a rapid growth and
already achieved high level of relevance for the topic of control in network systems (see Fig. 1).

Almost 50 years ago, a prominent Russian researcher Ya.Z. Tsypkin in his wonderful book
“Adaptation and Control in Automatic Systems” [10] announced the advent of a new, third period
in the development of control theory, namely the adaptive period when models and methods of
adaptive control are in the center of attention. The “adaptive” period lasted for almost 30 years,
nearly till the end of the XX century. By now, we can speak of the arrival of the fourth, network
period.

Existing literature on network control systems can be roughly divided into two large classes.
The first class is networked control, and the second is control of networks or in networks. The
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Fig. 1. Publication dynamics in main subfields of control theory in Web of Science indexed journals: (1) control
in networks (search for keywords “control and network”), (2) adaptive control (search for keywords “control
and adapt”), (3) intelligent control systems (search for keywords “control and intelligen”), (4) robust control
(search for keywords “control and robust”).

first direction of study is primarily related to control under communication and computational
constraints that are present in virtually any complex computer controlled system. Sample problems
considered in this field are the influence exerted on control systems by quantization and sampling,
delays and data losses or dropouts, bounded data rate, or channel capacity. These kind of problems
go beyond the scope of this survey, and main problems and most important results of the “networked
control” theory have been surveyed in recently published works [11-13].

In this survey, we consider the main problems and applications of the second subfield of network
control theory which studies the problems of control in networks. Specific problems in this field
are often denoted by such terms as “group control,” “cooperative control,” “multiagent control.”
Network control systems differ from classical in both the structure of the control object and the
structure of “controllers,” or control algorithms, which in network control theory are also often
called protocols. A control object is subdivided (either naturally or artificially) into separate sub-
systems (nodes) which are usually not controlled from a single center but make and implement
decisions independently based on the information available to them. This kind of behavior is called
agent behavior, and respectively the nodes/subsystems are often called agents, and the entire sys-
tem is called multiagent.! A way to represent a complex system as a group of interacting agents
is often called agent-based modeling. Hence a control algorithm in a network (multiagent) system
must be distributed and decentralized. The former term means that each node (agent) is controlled
by its own independent controller, and the second term assumes that such controllers only use
“local” information concerning the system (which usually means the state of the node itself and
several “neighboring” nodes).

A wide class of network multiagent systems is defined in continuous time by mathematical
models such as

N

i = Fi(t,w,w) + Y aij(t) @i (i, x5), i = bz w), i=1,...,N, (1)
=1

! The term “multiagent control” most often appears in the situation when nodes of the network are completely
autonomous from the start, and information connections between them arise only as they apply a joint control
algorithm which is intended to achieve a certain common, or cooperative goal (examples include consensus algorithms
for independent agents that we consider below and numerous coordination problems for autonomous mobile robots).
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where N denotes the number of nodes in the network, z;(¢) are state vectors for the nodes, w;(t)
are the inputs (controls), y;(t) are the measured variables (outputs), functions Fj(-) characterize
the agents’ own (local) dynamics, functions ¢;;(-) characterize the interactions between agents,
and the numbers «;; define a (weighted) graph of system connections. This graph, similar to the
dynamics of the nodes themselves, may be nonstationary (in particular, connections between agents
may appear and disappear again). Coupling functions ¢;; and gains o;; may be fixed in advance,
and in this case we study the properties of system (1) as a dynamical system with inputs u; and
outputs y;, or can be a part of a distributed control algorithm.

Analysis and synthesis problems for such systems have been considered in a large number of
works; see, e.g., [1-8, 14-24]. The adequate mathematical formalism here is a mix of stability
theory (usually Lyapunov or input-output methods) and graph theory (the properties of a system
significantly depend on the spectrum of the so-called Laplacian matrix of the graph of connections
defined via its adjacency matrix). The idea of theoretical works in this direction is to formulate
dynamical properties of the system (1) that correspond to a specific type of its behavior (either
observed in nature or preferable for the system’s designer) and then establish conditions to achieve
these properties. Here for natural systems (physical, biological, and so on) the rules of interaction
between agents are defined by the actual physical laws, and we solve analysis problems. For tech-
nical systems, in addition to that we solve synthesis problems for rules (algorithms) of interaction
that ensure achieving given properties, i.e., given properties work as control objectives.

One of the main control objectives is synchronization, which means that agents act in a co-
herent fashion. For instance, complete or partial coordinate synchronization means that agent
states or their observed outputs become asymptotically closer to each other: ||z;(t) — x;(t)|| — 0
or |lyi(t) —y;(t)|| = 0 as t — co. Below we will give a general definition of synchronization that
encompasses its various forms occurring in nature and in technology [25, 26]. To achieve this goal,
the dynamical system should possess the properties of partial stability, or stability with respect
to a function. This notion was introduced already by A.M. Lyapunov, but it was systematically
studied only in the second half of the XX century, starting from the works of V.V. Rumyantsev
and his successors. A special case of synchronization problems are problems of achieving consen-
sus [3, 4, 14, 15, 27, 28], where states or outputs of the agents must converge to a common value
(e.g., to the average of initial states) or a general predefined trajectory.? Group control prob-
lems (formation control) [2, 23] also reduce to partial coordinate synchronization problems with
the virtual leader method [16]. The partial stability property is similar to the notion of set sta-
bility, which is a convenient way to describe the properties of achieving control objectives under
disturbances.

For large numbers of agents (which in some problems is in the thousands or even millions), the
requirement of having all agents to exhibit desired behavior may turn out to be too strict. In such
cases, one chooses a characteristic point in the set of agent states (center, leader, center of mass),
and desired behavior is defined as a given behavior of the center given that all agents deviate from
this behavior in a bounded way. For such types of behavior, researchers introduce notions borrowed
from biology, e.g., swarming or flocking, and establish conditions under which the system begins
to exhibit the corresponding properties [17-19]. Finally, a number of works have been devoted to
the rendezvous problem, where the objective is for all agents to meet in a given place at a given
time [20-22].

In subsequent sections, we show mathematical settings of some basic problems and formulations
of the corresponding results in the above-mentioned fields. We show approaches to systematizations
of known results [23-25]. We also pay special attention to adaptive control problems in networks and

2 As we will explain in detail below, this terminology cannot be considered established. For instance, in many works
the term “consensus” is used as a synonym of coordinate synchronization.
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approaches based on the passification method [29-34]. But before we proceed to formal exposition,
we consider a few examples of practical problems that lie in the field of network control.

2. NETWORK CONTROL PROBLEMS

Industrial and economic networks. One of the best known and widely considered classes of dy-
namical networks are industrial and economic networks that include financial and transportation
networks. Modern transnational industrial systems (corporations) have global geographic location.
Raw material is mined in some countries and on some continents, individual units are manufac-
tured in others, assembly is done in the third, and clients who receive the ready product may be
located in some fourth countries. At the same time, the production process in each manufactur-
ing node of the network must proceed smoothly without problems with either raw materials or
required units, the level of automation in each node must ensure information exchange and the
interaction of measurement and actuating devices (sensors and actuators) via wired and wireless
communication channels in order to ensure stability and accuracy of operation for all equipment.
Besides, warehouses in each node must store sufficient but not excessive reserves of raw material
and units, and bank accounts in each node must have sufficient but not excessive capital reserves to
ensure the entire production process. The ready product must be timely delivered to the customers
via transportation networks, and payment for the product must be timely received at the bank
accounts of industrial nodes via financial networks. Formalization of control problems described
above is not too hard, but solving such problems is complicated because mathematical models of
manufacturing and exchange processes are non-uniform, and the dimensions of the resulting data
points are large (in the hundreds and thousands) or even gigantic (in the millions and billions).
Nevertheless, there appear a large number of works on the control over industrial networks, and
interest to these problems continues to grow [35-37]. These problem setings are also closely related
to dynamic network models of markets, auctions, and economies that define the interaction of trade
and economic agents [38-41].

Group control over land, air, and marine vehicles. Networks of mobile robots, unmanned aerial
vehicles, surface and underwater vehicles have attracted a lot of attention for more than a decade
[14, 22, 27, 42—-46]. Such networks can solve numerous monitoring and search problems over a given
territory or aquatory, online photo and video surveillance and so on. The recent boom of construc-
tion and application of unmanned aerial vehicles (UAV) has opened up new possibilities: joint carry-
ing of loads, construction of buildings by collectives of robots, self-assembling of constructions in the
air and so on. Control over such networks requires one to develop control methods for networks of
dynamical systems with control objectives corresponding to various behavior types of a “collective”
of robots. Excellent results in group control over a group of quadrocopters have been demonstrated
in a plenary talk of Raffaello d’Andrea (ETH, Zurich) on the CDC-2013 conference [47]; see also
(48, 49].

Problems of cooperative robot behavior are especially interesting for nonstandard control ob-
jectives. One example of this class of problems is robot soccer, where the control objective is to
score a goal under adversarial actions of the opposite team. This leads to a number of complex
intermediate problems: encircling moving obstacles, planning a collection of player trajectories,
implementing maneuvers, and so on. Over the latest years, serious progress has been achieved in
solving problems of this kind; a survey of general approaches and results can be found, for in-
stance, in [50]. A similar class of air traffic control problems is becoming further complicated by
the increase in “population density” of the air space, especially near large cities and airports.

Power networks. An important class of network systems are electric power networks that consist
of a large number of power generators some of which are connected with power lines. The main
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control objective here is to achieve and support stable synchronous operation of generators under
changing load and various disturbances. If one achieves reliable synchronization, one can reduce the
number of emergency situations (blackouts) and reduce various kinds of losses. A large number of
generators and consumers in the network, problems of measuring the corresponding variables such
as the phase (instantaneous value of voltage or current), and wide ranges of network parameters
present significant obstacles to the control of power networks.

Another obstacle that complicates control problems for power networks is their complex dynam-
ics. Apart from nonlinear dynamics of the generators, one has to take into account the large-scale
structure and complex topology of the network. This leads to a substantially nonlinear character
of network behavior defined in terms of full or partial stability, bifurcations, and chaos. Moreover,
sufficiently detailed models of real life power networks are defined by a collection of a large num-
ber of differential and algebraic equations, which further complicates their study and control over
them [51, 52].

New possibilities in the control of electric power networks have arisen with the development and
production of such devices as PMU (Phase Measuring Units) and WAMS (Wide Area Measure-
ment System) that ensure precise measurements of time and phase variables of the network, and
other flexible systems of transmitting alternate current, in particular FACTS (Flexible Alternate
Current Transmission Systems). These and other factors have motivated the concept of a “smart
grid” [53-56], which in Russian publications is sometimes called an “active-adaptive network” or
“intelligent network” [57].

This concept was born in the U.S. and European Union countries, where it has served as a
foundation for the national policy of energy and innovation development. The reasons for the
new concept to arise, both in the whole world and in Russia, are related to a number of factors:
technological progress (increasing the automation level, development of new technologies, rapid
growth of the number of small generating energy sources); a growth in the consumers’ demands
(requirements on the range and quality of services, decreasing prices); reduction in reliability (due to
increased wear and tear in the equipment, deterioration in the electric supply reliability, high level of
losses in transforming, transmitting, distributing, and using the energy); increased requirements to
energy efficiency and ecological safety, and so on. A number of control problems for power networks
with methods of adaptive and robust control have been considered in recent works [58-61].

Distributed communication systems and computer networks. In communication theory, the
study of distributed networks began long before “network” control theory ever arose [62, 63].
A distributed communication network consists of a number of receiving and transmitting nodes
connected by a nontrivial topology of heterogeneous communication lines (either wired or wireless).
Examples may include telephone and cable networks, mobile communication networks, or any com-
puter network. A number of problems solved in the theory of distributed communication networks
are immediately related to control over multiagent and network systems. One such problem is
the problem of time synchronization, i.e., phase and frequency synchronization of tick generators.
Despite the fact that distributed algorithms for automated tuning of time in distributed networks
have been known for a long time (see, e.g., the survey [64]), tools for their strict mathematical
analysis have appeared only very recently [65, 66] in the form of studying consensus algorithms
that are considered below. Another classical problem is the dynamic load balancing problem that
arises in any large communication network: in the presence of several possible paths of delivering a
packet from point A to point B (with, generally speaking, different throughput), distribute traffic
in real time between these paths to minimize the average delivery time. A similar problem can be
posed for a system of several servers that process requests or a cluster of several processors [67]:
how do we redistribute the load between servers/processors in such a way that the average time
of processing a request is as small as possible. Load balancing algorithms based on local voting
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protocols (which are, in essence, synchronization and consensus algorithms) have been studied in
recent works [68, 69)].

Ecological networks. Ecological systems are characterized by the fact that they are spatially
distributed and reflect the interaction of multiple species and populations, which leads to a complex
character of their corresponding networks. Connections between species are generated by trophic
(food) chains that define “who eats who” (“food web”) [70]. Control over ecological networks can be
intended to preserve stable existence of populations, defend them from extinction, keep population
size of a species inside given limits. Besides, industrial exploitation of ecological systems (gathering
crops, harvesting resources) leads to the need to optimize cropping, profitability, and so on. The
possibilities of control, i.e., direct influence over the natural life of an ecosystem, are often bounded.
In similar problems, it may make sense to pass from traditional formulations of control objectives
(controlling and tracking) to “softer” setting such as partial stabilization, e.g., controlling the
values of a certain function of the ecosystem state, which in absence of a controlling influence is
preserved (is an invariant of the system’s free motion). A recent work [71] proposes adaptive control
algorithms for invariants of ecological networks defined by a multi-species Lotka—Volterra model.
Note that Lotka—Volterra dynamics is closely related to game models of biological evolution of the
species [72], in particular replicator dynamics. These models lay the foundations for a new rapidly
growing field of evolutionary game theory [40, 73] that relates game theory and theory of complex
networks and finds numerous applications in economics, biology, and “evolutionary algorithms”
that are used in artificial intelligence.

Neural networks. A natural and very meaningful example of networks are neural networks
composed of neural cells of a human being or an animal connected with electrical or biochemical
interactions. The first models of such dynamical systems, known as networks of pulse-coupled
oscillators, were studied in biological, physical, and mathematical literature long before the “boom”
of network control theory (see, e.g., the well-known work [74] and bibliography therein). Pulse-
coupled oscillators yield an example of a hybrid network control system where the dynamics of
nodes is continuous, but interactions occur at discrete time moments that depend on the system
state. In electrotechnics, this approach to control is known as “impulse modulation of the second
kind,” while modern control theory literature calls it “event-triggered control.” For a number of
important processes, e.g., circadian (daily) rhythms, there also exist continuous models [75] that
reduce to the general form (1). At the same time, the above-mentioned models describe a rather
narrow class of processes controlled by neural cells and reducing to generating stable periodic
rhythms. The most interesting of those are neural networks that define the cognitive activity of
the brain. Dynamics of these networks is so complex, and possibilities for control are so weak,
that at first glance mathematical methods for network control are inapplicable to neural networks.
However, one example of such an application is given by the field of neurofeedback connection that
has lately developed in neural sciences and has achieved rapid growth [76]. It is based on using
multidimensional signals read from an electric or magnetic magnetoencephalograph to measure
activity states of the brain. For the control, one can show certain images on the computer screen
based on how close the measured state is to the desired state. There are more and more examples
where such schemes of neurophysiological studies have been successfully used to treat cerebral
diseases.

Molecular systems and nanosystems. One well-known example of network structure in physics
is a crystal lattice. The atoms oscillate around the nodes of a lattice under the interatomic forces
that decay as the distance between the atoms grows. Although there are few ways to influence such
systems, control problems under the influence of external forces and electromagnetic fields in certain
cases may be solved, and their solutions may lead to creating new substances or materials with new,
unusual properties. These problems have become especially relevant over the latest years when
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there appeared measurement and control devices (atom-force microscopes, computer controlled
femtosecond lasers) that let us control the behavior of individual atoms and molecules [25]. We
specifically mention a new field of control over quantum networks [77], where nodes carry quantum
information (qubits), and links correspond to quantum entanglement between the states of qubits.

3. MATHEMATICAL MODELS OF NETWORK CONTROL

First of all, let us comment upon the difference between network systems control and multicon-
nected systems that have been traditional for the science of the XX century. A control plant (P)
in a multivariable system also has several inputs and several outputs. However, studies of mul-
tivariable systems have traditionally assumed that measurement results of output values go to a
central controlling device that implements the control algorithm for the object and produces values
of controlling influences to further send them to P inputs. Under this assumption, the controller
has access to all measured values of the outputs at the same time (Fig. 2, left). The theory of
multivariable systems had been well developed already in the XX century [78-82].

Network control problems, on the other hand, do not have a single control plant and a single
controller. There may be both multiple plants and multiple controllers, and they can be spatially
distributed (Fig. 2, right). Moreover, each controller only has access to a part of the measured
(output) variables, and time moments when information in the network is updated may differ in
different parts of the network. Thus, plants and controllers are to be considered as interacting
agents in a multiagent system, and instead of control algorithms we should speak of network
protocols for interactions between subsystems (agents). This presents additional obstacles in setting
and solving the problems but allows to include into consideration asynchronous and event-driven
(event-triggered) interactions.

Next we consider formal problem settings for network control and main approaches to solving
them. Consider a network S of the form (1) consisting of N interconnected subsystems (agents) S;,
1=1,...,N, each of which is defined by equations

N

i = Fi(wi,ui) + Y ougepij(wiy ag), v = hilww), i=1,...,N, (2)
=1

where z; € R", u; € R™, y; € R! are the state, input (control), and output (measurement) vectors
for agent S;, vector function Fj(z;,u;) and h;(z;, u;) define agent dynamics, vector functions ¢;;(-),
i=1,...,d, j=1,...,d, define interactions between subsystems, and coefficients «;; € R! char-
acterize the intensity of interactions. If all agents are identical, i.e., Fj(z;,u;) = F(x;,u;), the
network is called homogenous; otherwise, heterogemeous. There often arise networks where
interactions between agents depend only on their disagreement (difference in their states):
©ij(zi, ) = @ij(x; — ;). Such couplings, especially in case of linear functions ¢;;, are often called

; (e H e

Fig. 2. A multivariable control system (left) and a network system (right). Blocks P and C denote respectively
control plants and controllers.
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diffusive coupling, and the network with such couplings is itself also sometimes called a diffusive
network [83]. The most comprehensively studied type of network systems at present are linear
network systems of the form

N
T; :AZ‘ZL‘Z'—FBZ"LLZ'-FZO(@]'AZ']’(I‘Z‘ —l‘j), Yi :OZ'I‘Z'—I—DZ"LLZ', i=1,...,N, (3)
j=1

where A;, B;, C;, D;, A;; are matrices of the corresponding dimensions.

Similarly, one can introduce classes of discrete time network models where derivatives are re-
placed with finite differences.

Properties of the network as a control object depend on the character of interactions between
agents defined by functions ¢;;(z;, z;) and coefficients c;;. To define the structure of interactions,
we introduce a directed graph (digraph) as follows: G = (V, ), where V is the set of vertices, and
E CV xVis the set of arcs. For each i =1,..., N, vertex v; is associated with agent S;. We will
assume that an arc (v;,v;) belongs to the set of arcs £ if information flows from agent S; to agent S;.
In terms of the model of network (2) it means that c;; # 0. We assume that the graph has no loops,
ie., (vi,v) ¢ € foralli=1,...,N.If oy; # 0 if and only if aj; # 0, the graph can be regarded as
undirected. In the models considered below, all weights are positive: aj; > 0. The resulting graph
is called the information graph, or the network topology. As we show below, many fundamental
properties of network systems are defined by their topology and can be naturally defined in the
language of graph theory. Thus, graph theory plays a significant role in analysis and synthesis
problems for network control systems.

4. OBJECTIVES OF NETWORK CONTROL:
SYNCHRONIZATION, CONSENSUS, SWARMING

4.1. A General Definition of Synchronization

In network control problems, the control objective is the desired group (collective, cooperative)
behavior of agents in the network. An important class of control objectives is given by provid-
ing the desired coordinated operation of the agents called synchronization. In particular, it can
be the matching or approximation of state variables for two or more subsystems or a coordi-
nated change in certain quantitative characteristics of subsystems. In some cases, synchronization
arises due to natural properties of the system of interacting objects itself. One example of this is
frequency synchronization for oscillating or rotating bodies (see below). This situation is called self-
synchronization. In other cases, to coordinate the behavior of objects one has to introduce into the
system additional interactions or influences. Then one says of forced or controlled synchronization.
In these cases, synchronization means rendering the processes to behave synchronously.

The first versions of general definitions for periodic processes have been proposed in [84] (concur-
rence or multiplicity of mean frequencies of oscillatory or rotational motions) and in [85] (existence
of an asymptotically stable invariant torus of dimension n — m, where m is the degree of synchro-
nization). The works [84, 86] also note that synchronization may mean coincidence of the values
of certain functionals of system coordinates. For instance, as such functionals one can consider the
moments when coordinates turn to zero or reach extreme values. A number of works have been
devoted to synchronization of oscillations in phase synchronization systems [87] and more general
models of periodic systems [88]. Over the course of study of synchronization of chaotic processes,

% Formally speaking, a nonzero weight can always be regarded as positive by switching the sign of function @;;. At
the same time, in many network systems (e.g., social [40]) couplings between nodes can be meaningfully divided
into attractive and repulsive. These systems are more convenient to define with weighted graphs with variable
signs (signed graphs).
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a number of new versions for the notion of synchronization have appeared: coordinate (identical)
synchronization [89, 90], generalized synchronization [91], phase synchronization [92], and so on.

A general definition of synchronization properties that encompasses both the case of self-
synchronization and the case of controlled synchronization has been proposed in [93] and further
developed in [26, 94, 95]. Below, similar to [25, 26|, we give a general definition of synchronization
that lets us both get many definitions known in literature as special cases and define various types
of complex behavior in networks.

Consider k processes (objects) the state of each of which at time moment ¢ is characterized by
a certain vector z(?) (t), i =1,...,k, where ¢t changes on the interval 0 <t < co. We first assume
that all vector functions () (t) belong to the same functional space X

Suppose that we know a certain numerical characteristic of these processes defined by time-
dependent mappings C; : X — C, where C is the set of possible values of C;. The characteristic C}
is called the synchronization parameter, or synchronization index. It is important that the char-
acteristic C is assumed to be the same for all objects or processes. The value of C; may be a
scalar, vector, matrix, or a function, e.g., the frequency spectrum of the process on an infinite or
some finite, either fixed or sliding, time interval. In order to be able to compare the values of
the characteristic for different processes, we introduce a set of time-independent vector functions
F,:C—>R™ i=1,...,k, called comparison functions.

Definition. We say that synchronization of processes x(?) (t), i=1,...,k, holds with respect
to characteristic Cy and comparison functions Fj if there exist real numbers (temporal or phase
shifts) 7;, ¢ = 1,..., k, such that for all ¢ > 0 it holds that

Fy (Ciam [e1]) = ... = Fi (Coanla]) - (4)

By approximate synchronization (e-synchronization) we mean the case when relations (4) hold
only approximately, up to e:

Fi (Cuinla]) = Fy (Corlaj))| <& Vig, ¢20, (5)

and by asymptotic synchronization, the case when the accuracy up to which relations (4) hold
disappears over time:

lim
t—o00

F (Crmlai]) = Fy (Cir 3]) | =0 (6)

Here and in what follows we denote by | X| the Euclidean norm (square of the sum of squares of all
components) for a vector or matrix X, unless specified otherwise.

For a given averaging operator (-), on the interval 0 < s < ¢, one can introduce the notion of
synchronization on average as the fact that for all £ > 0 it holds that

(Qs)y <&, (7)

where Qs is some scalar function (measure of desynchronization) that characterizes its deviation
from the synchronous mode. The averaging operator is often defined as an integral operator
(Qs); = 1 f(f Qsds, and the measure of desynchronization Qs as the mean squared deviation from
the synchronous mode:

k

Q=)

ij=1

Fy (Coinlad) — Fy (Cran ][ ®)
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Introducing the measure of desynchronization is an important application of the formal defi-
nition. It gives a possibility to construct regular synthesis procedures for control algorithms over
synchronization: definitions of controlling influences that create a synchronous mode in the system
or change its characteristics. Such algorithms may be developed, for instance, based on the fast
gradient method, see [25, 96].

Remark 1. Relations (4) are sometimes more convenient to write as k — 1 equalities

Fi (Coyr e 0)]) = B (Coir 2P @)]) =0, i=1,... k-1 (9)

Remark 2. A more general notion is multiple synchronization, that corresponds to the case when
relations (4) are replaced with

n Py (Coyn 2D ®)]) = ... = meFy (Cipn [2®P(1)]) (10)

and equalities (9) transform into
. n .
Fy (Crone@(0)]) = B (Coan W (0)]) . i= 1 k=1, (1)

where n; are the multiplicity coefficients of the synchronization.

4.2. Types of Synchronization. Consensus

The above definition encompasses the main types of synchronous behavior of processes that
occur in practice. Let us consider several examples.

Ezample 1 (frequency (Huygens) synchronization). This kind of synchronization is introduced
for processes for which the notion of frequency w; is well defined, in particular for periodic (os-
cillatory or rotational) processes. The C; characteristic in this case is the average frequency
Cy = wy =< & >¢ over a period 0 < s < t, and the synchronization condition is that

wy = n;w*,

where n; are integer numbers (synchronization multiplicities), and w* is the so-called synchronous
frequency. Therefore, it is natural to introduce comparison functions as F;(w;) = wy/n;. For n; = 1,
i=1,...,k, we have simple (non-multiple) synchronization.

This version of synchronization can be extended to nonperiodic processes if one can correctly
define average frequencies. One can also consider the “piecewise periodic” case, when the set of all
time moments is partitioned into intervals A, = [t;,%441), ¢ = 1,2, ..., such that all motions y;(-)
are periodic on every interval A, with frequencies w;(t) that are piecewise constant functions.

An extended version of Huygens synchronization arises if we replace the requirement that mean
frequencies coincide exactly with a requirement that the spectra are coherent in the following sense.
We introduce positive scaling functions for spectra a;(w), f;(w) for every system %;, i = 1,... k.
The synchronization parameter C' is defined as a function J,:

Cu(yi(-)) = ai(w)Si(Bi(w)w), (12)

where S; is the spectral density of the output signal y;(¢) which is assumed to be correctly defined.
The comparison functions can be introduced by corresponding the synchronization parameter C
with a set of values of C,, for a given set of frequencies.
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Ezample 2 (extremal synchronization). Extremal synchronization is when scalar processes (%) (t)
achieve their extreme values simultaneously or with a certain delay [93, 94]. The synchronization
index in this case is C; = t!(t), the time when the ith process reaches extremum on the interval
0 < s < t. Time shifts 7; can be the intervals between moments when the first extremum is achieved
by the ith and the first processes. For vector processes, we can consider synchronization of the ex-
trema of the corresponding scalar components of vectors z(?) (t) or certain scalar functions of 2@ (t).
Such synchronization is important for a number of chemical and biological processes.

Ezample 3 (phase synchronization). Systems with phase synchronization are well known in radio
technics and communication theory [87, 88]. However, traditional technical applications usually
synchronize periodic processes whose frequencies are constant or periodic functions of time. In the
1990s, physicists sparked an interest to studying synchronization for chaotic processes, for which
researchers introduced generalized definitions of phase and phase synchronization [92]. The most
natural way to introduce the notion of phase for a chaotic process is to consider the process’ behavior
between moments when it intersects a certain surface (Poincare sections). Here the synchronization
index will be the value of the phase ¢; of process x(t) lying in the interval from 0 to 27 and defined
as Ciz] = ¢y = 2 tn:t—ntn +2mn, t, <t < t,11, where t, is the time of the nth intersection of the
process trajectory with the Poincare section [92].

For k =2, choosing Fi(p;) = Fa(pr) = ¢ we get in-phase synchronization. If we define the
comparison functions as Fi(p:) = @, Fa(er) = ¢ + m, we get antiphase synchronization.

A somewhat more general notion of synchronization results if we take as the value of the syn-
chronization index the value Cy = t.(t), where t,(t) is the last moment of intersecting the surface
that does not exceed the moment ¢ [93]. This approach also encompasses the case when there
is no physically meaningful phase since the process is too irregular. In particular, if we take as
the Poincare section a surface defined by equating to zero the time derivative of a certain scalar
function of the process, we get extremal synchronization (see above).

Ezample 4 (coordinate synchronization). Starting from mid-1980s, researchers began to use the
definition of synchronization for interrelated subsystems as matching coordinates in their state
vectors [89]. This definition has become especially popular after the publication of a work by
Pecora and Carroll on control over the synchronization of chaotic systems [90] (this paper has been
cited more than 6000 times). Obviously, coordinate synchronization also fits the general definition
proposed above if we introduce synchronization index Cy(x;) = z;(t), where x;(t) denotes the value
of the state vector for the ith subsystem (agent) at time moment ¢, and comparison functions are

identity functions: Fj(z) =z, i =1,...,k. A significant number of works have been devoted to
studies of asymptotic coordinate synchronization, when the control objective is to satisfy relations
dim [ai(t) — ay(0)] =0, ij=1....k (13)

Ezample 5 (generalized (partial) coordinate synchronization). Coordinate synchronization from
the previous example is often called full, or identical, which emphasizes that all phase coordinates
for the subsystems must match exactly. Another important practical case is when only a part of the
phase coordinates for subsystems, certain functions of phase coordinates y; = h(z;), or outputs have
to match. The corresponding notion was introduced in [91] and called generalized synchronization.
Obviously, generalized synchronization fits the scheme above for Cy(x;) = x;(t) and F;(z) = h(x),
i=1,... k.

Accordingly, asymptotic partial synchronization can serve as a control objective:

T () — i) =0, ij =1,k (14)

Note that achieving partial synchronization may be related to the system having symmetries
and invariant manifolds [83].
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Ezample 6 (consensus). A special case of coordinate synchronization (full or partial) is con-
sensus (with respect to the state or to the output). If, apart from satisfying (13), there exists a
(general) limit of the states limy_,o xj(t), we say that consensus has been reached among agents
(or, speaking more precisely, asymptotic consensus with respect to the state). Similarly, partial
consensus (or consensus with respect to the output) is defined as a strengthened version of con-
dition (14) that presumes the existence of a general limit lim;_, y;(t) € R™. We note, however,
that for special cases consensus may also mean other types of behavior. For instance, for agents
with double integrator dynamics §j;(t) = u;(t) consensus usually means the existence of a general
limit for velocity vectors g;, and here trajectories of the agents y;(t) are synchronized in the sense
of (14) [14, 27]. Further, consensus may mean that the states or outputs converge to the state or
output of a specific agent, called the leader (leader-following consensus), or simply to some pre-
defined reference trajectory (reference tracking consensus) [14, 27]. Besides, many works refer to
consensus as a synonym of either full or partial coordinate synchronization.

The term “consensus” is motivated by two applications that arose at the same time in sociology
and applied statistics. The first application is related to opinion and social power dynamics in social
groups. One of the first network models of this sort, describing an iterative process of averaging
opinions, was proposed by the social psychologist French in 1956 [97, 98]. On the other hand,
operations research and applied statistics considered the problem of making coordinated decisions
by a group of experts [99], which also turned out to admit a linear iterative algorithm [100]. Later
the behavior of such systems was actively studied with the formalism of Markov chains; see, e.g.,
the survey [28]. Main results on reaching consensus will be considered below.

Ezample 7 (discrete synchronization). Sometimes one has to consider coordinate synchroniza-
tion which is discrete in time, when exact matching of outputs holds only at some discrete set of
time moments {t,}, ¢ =1,2,.... In this case, the synchronization index C[y;(-)] depends on the
set of values of the outputs* of processes y; = h(z;) at time moments ty and can be defined as an
infinite sequence

Clyi(-)] = {wi(t1), vi(ta), .- .}

A variation of discrete coordinate synchronization occurs when Cyy;] = t4, where 4 is the time
moment when some coordinates or outputs y;(¢) either approach a given point or intersect a given
surface. Another variation is the case when the value of ¢, is defined as the time of reaching the
gth local extremum of the signal. This version is a special case of extremal synchronization (see
Example 2) and reduces to the previous one if we remember that the extremal condition is that
the time derivative equals zero.

Naturally, one has to impose additional constraints that ensure that all introduced values are
correctly defined. It suffices to require that each trajectory intersects the section an infinite number
of times, and the intersection moments contain arbitrarily large ¢ > 0. Interestingly, in this way
one can construct a generalized definition of phase for a nonperiodic process which lets one consider
phase synchronization (Example 3) as a special case of discrete synchronization.

Other examples. The above definition lets us formalize various properties of the processes that
are intuitively desirable for synchronization by choosing a corresponding synchronization index and
comparison functions. For instance, to define coordinate synchronization of oscillatory processes
that occur synchronously but have different amplitudes of (different) oscillations, we can introduce
a synchronization index with a normalizing factor:

x(t)
Ct [x] = .
max |z (s)]

4 In a special case one could have y; = ;.
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If one of two processes with period T is superimposed with irregular noise, as the synchronization
index we could use the sliding average of the process: Ci[z] = % ftt_T x(s)ds.

Various combinations of the definitions introduced above are possible. For instance, one typical
situation in synchronization problems for networks of electrical and mechanical systems is when
we need asymptotic matching of angular velocities (rotation frequencies) of the rotors under an
additional condition that the differences in rotation phases tend to constant values. Such an
objective condition corresponds to transient stability of the power system, sometimes also called
Willems stability.

4.8. Swarming

In solving optimization and control problems, researchers often turn to analogies in the behav-
ior of biological and technical systems; this approach has led to the discipline of bionics. The
bionic approach has led to whole new directions of study in applied mathematics: evolutionary
programming, genetic algorithms, and so on. Numerical methods also reflect ideas coming from
the attempts to construct models of collective, network behavior of organisms: particle swarm
optimization, ant colony optimization algorithms, and so on.

In network control problems, the most comprehensively studied direction is flocking. Instead of
“flock,” researchers also sometimes use the terms herd, swarm, or school of fish. One convenient,
and hence common, formulation of the notion of a “flock” has been given by a computer graphics
researcher K. Reynolds in 1987 [101] in the form of three rules. These rules served as a foundation
for the first computer model of flock behavior and have attracted a lot of attention since then. The
rules are as follows:

1) cohesion: do not stray far from the neighbors;

2) separation: avoid collisions with the neighbors;

3) alignment: match the speed with the speed of the neighbors.

Modeling algorithms based on these rules have led to a quite realistic description of swarm
behavior. The works [17, 18, 22] propose control algorithms for agents that let one initiate swarm
behavior in the presence of obstacles. The most popular approach to constructing such algorithms is
based on introducing the so-called potential function that penalizes both violations of rules 1-3 and
approaching the obstacles. Note that potential functions can be interpreted as objective functions,
and algorithms can be constructed based on fast gradient methods [96].

5. FUNDAMENTAL RESULTS: FAX-MURRAY THEOREM, REN-BEARD THEOREM,
OLFATI-SABER’S THEOREM, CHEN’S THEOREM

Next we show several basic results in the field of network control that have already become
classical to this day and represent cornerstones of the theoretical foundations of this direction of
study.

Probably the best known publications on control over network systems are papers whose leading
co-author was Richard Murray from the California Institute of Technology [2-4]. The number of
citations both for paper [3] and for the paper of A.S. Morse with co-authors on a similar topic [102]
has exceeded 3000, which sets a record for works on automation and control systems in the last
20 years. The number of citations of paper [2] and a subsequent survey [4] exceed 1000 which also
supports the conclusion that network control is very important and highly relevant nowadays.

5.1. Stability and Synchronization in Linear Networks: The Fax—Murray Theorem

The work [2] considers stabilization problem for a formation of identical agents (carriages) with
respect to a given reference motion. Suppose that the dynamics of deviations of the ith agent from
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the reference is defined by equations
&; = Aoxi + Boui, y; = Coxy, i=1,..., N, (15)

where z; € R", u; € R™, y; € R! are respectively state (deviation from reference motion), input
(control), and output (measurement) vectors for the ith agent, Ay, By, Cy are the matrices of the
corresponding sizes. The control that serves as input for the ith agent is produced by the controller
that receives as input the weighted sum of deviations of the agent state from the states of its
neighbors:

z¢=—|Nz’|_l Z Co(w; —zj), i=1,...,N, (16)
JEN;

where N; is the set of neighbors of the ith agent, |N;| is the number of elements in N;. Each
controller is also assumed to be a linear dynamical system, defined by state equations

v; = Agv; + B i + Bo Rz,
) RY; 1,RYi 2,R~i i = 1’ o ,N, (17)
u; = Crv; + D1, ry; + Da Rz,

where v; € R%.
Placing agents into IV vertices of a graph and connecting the ith vertex with every element
from N;, we get the informational graph of the network system (which is, generally speaking,

directed). To study the properties of system (15), (16) it is convenient to introduce the Laplace
matrix of this graph L = (Lz-j)gj:l, where

1, fori=j
Lij = —INi|7!, forjeN; (18)
0 for j & {i} UN;.

The following theorem formulates stability and synchronization conditions in the above-described
network (multiagent) system.

Theorem 1 (Fax, Murray [2]). System (15), (16) asymptotically stable (x;(t) — 0 fort — oo for
all 3) if and only if all systems of the following form

t; = Aoz + Boui,  y; = Cowi, 2z = NCoxy, i=1,... N, (19)

closed by the controller (17), where \; are the eigenvalues matrices L, are asymptotically stable.
If this condition is satisfied for all nonzero \;, and the graph is strongly connected,” then the
asymptotically stable consensus set is {(x1,...,xN): 1 = ... = TN}, in other words, coordinate
synchronization holds, |x;(t) — x;(t)] == 0.

The Fax—Murray theorem shows that the stabilizability of a target set in a complex system
of N objects whose state vector has dimension (n + s)N is defined by the stability of N systems
of lower order (n + s). The resolvability of the stabilization problem nontrivially depends on the
spectrum of the Laplace matrices. Note that eigenvalues \; may be complex if L is not a symmetric
matrix, i.e., the graph of information connections is directed.

We note that the second statement of the above Theorem 1 on achieving synchronization was
not in fact explicitly formulated in [2] as a theorem, although it was used in the examples. This
theorem was subsequently rediscovered and generalized many times; see, e.g., [24]. In particular,

5 A directed graph is called strongly connected if for every pair of vertices i, there exists a directed path from
vertex ¢ to vertex j.
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the strong connectivity condition in the second part can be replaced with the existence of a directed
spanning tree similar to the consensus algorithms considered below, and instead of (16) one can
consider output variables of a more general form

N
zi=—y a;Co(z; —a;), i=1,...,N, (20)
j=1

where «a;; > 0. Accordingly, the informational graph is defined by adjacency matrix (c;), and
a regular Laplace matrix should be replaced by its equivalent for weighted graphs that we will
introduce below in the part on consensus algorithms. Note that the Fax—Murray theorem provides
tools to solve both analysis and synthesis problems. For instance, for a given informational graph it
lets one synthesize the controller (17) that ensures synchronization of agent states (a similar problem
has been considered in [24]). Using the “internal model principle” and its nonlinear generalizations,
the synthesis problem can often be solved for nonuniform linear [103] and nonlinear [104] agents.
Analyzing the proof in the work of Fax and Murray, we see that their theorem actually holds
for a very wide class of multiagent systems and can be extended to systems with discrete time,
systems with periodic coefficients, systems with delays, and other infinite-dimensional models.
The corresponding special cases that consider agents and controllers of a special form, are often
published with no references to the original general result.

We should note that a special case of Theorem 1 related to scalar agents had been obtained much
earlier by B.T. Polyak and Ya.Z. Tsypkin [105] and was called the stability criterion for uniform
systems. The work [105] has studied a system that can be viewed as a network of agents of the
form

N
/ <c(l1t> yi(t) = ui(t), wit) =D ayy;(t), i=1,....N.
j=1

Here f(p) is a polynomial or a rational transition function, and matrix A = (a;;) is fixed (note that
it does not have to have Laplacian structure). Stability of this system is equivalent to the fact
that polynomials f(p) — \; are Hurwitz for all eigenvalues of matrix A. Passing to the state space,
this statement can be proven similarly to the Fax-Murray theorem [2]. The original work [105],
however, proposed an elegant proof in the frequency domain. One late development of the ideas of
Polyak and Tsypkin are frequency stability criteria for multidimensional network systems obtained
in subsequent works of S. Hara; see, in particular, [106].

5.2. Master Stability Function and Networks of Nonlinear Agents

Ideas based on the above-formulated results of Fax and Murray also include the notion of a
master stability function introduced by American physicists Pecora and Carroll in 1998 [107]. This
notion lets us study the local stability of the target manifold for more general, nonlinear models of
dynamics in uniform networks

N

=1

where the agents’ own dynamics and connections between them are uniform. One usually assumes
that the matrix L has Laplacian structure in the sense that Z;-V:l lij = 0and l;; > 0 for i # j. If
at point zg it holds that f(z¢) = 0, ¢(x¢) = 0, then, obviously, xg = (zo,..., o) is an equilibrium
of system (21). We construct Jacobians of functions f(z), ¢(x) at the equilibrium point: D f(xg),
Dy(z), and consider the differential system (master stability equation)

(t) = [Df(x0) + ADp(x0)]=(t)- (22)
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If system (22) is exponentially stable (matrix D[f(zg) + A\p(xo)] is Hurwitz) for all eigenvalues
of the Laplacian matrix L, then the equilibrium of xg is asymptotically stable. If, on the other
hand, the said condition holds for nonzero eigenvalues A # 0, and matrix L corresponds to a
strongly connected graph, then near the equilibrium position the trajectories are asymptotically
synchronized: |z;(t) — x;(t)| — 0.

For linear systems, the above result is virtually identical to the first part of the Fax—Murray
theorem. However, physics and other natural sciences widely use the following more general result
which was also formulated (without proof) by Pecora and Carroll in 1998. Let s(t) be a solution of
system § = f(s) that defines a synchronous mode X (t) = (s(t), ..., s(t)) (obviously, due to property
Z;-V:l l;j = 0 it is a solution of system (21)). We compute the leading Lyapunov parameter o(\)
for the system linearized along s(t),

2(t) = [Df(s(t)) + ADe(s(t))]2(1), (23)

as a function of the complex number A and depict on the complex plane the set S of points A for
which a(\) < 0. The synchronous mode X (t) is asymptotically stable if all points in the Lapla-
cian’s spectrum belong to S, i.e., A\; € S, 9= 1,..., N. If the said condition holds only for nonzero
eigenvalues, and the informational graph is strongly connected, then asymptotic synchronization
holds near the solution X (t). Thus, to test asymptotic stability (synchronization) for a system of
order N x n it suffices to check asymptotic stability of N (respectively, N — 1) systems of order n.

5.3. Consensus Criteria: Agents As an Integrator

The work [3] has also significantly influenced the development of network control. In this work,
for the first time among journal works on automated control the authors systematically used the
notion of consensus® and presented the basic notions and results of algebraic graph theory, laying
the foundation of modern network control theory. They also considered the case of networks with
variable topology (switching graphs of connections) which is important for control in dynamic
conditions, when the connection between a pair of agents may be violated or repaired during the
system’s operation. The work [3] studied a network of agents in the form of an integrator

:i’;Z:uZ’ yZ:$Z7 Z.Zl,...,N. (24)

The problem is posed as achieving, with a consensus algorithm (protocol)

N
ui=—> ag(z; —x5), (25)
j=1
the control objective
tllgloxz(t) =2y, i=1,...,N (26)

for some x,. Here matrix (a;;) defines a weighted graph: agent i is connected to agent j if and
only if a;; > 0. Here the gain a;; is understood as the weight of the edge (i, j).

If, apart from (26), it additionally holds that

1 N
Te= ;xi(o), (27)

we say that we have achieved consensus on average.

6 A rather general convergence criterion for the consensus of protocols with discrete time was published much earlier
in [108], but that work did not use the term “consensus” or methods of graph theory.
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We remind that a graph is called balanced if incoming and outgoing degrees of vertices coincide
for all graph vertices, i.e., if

Zaij:z:aji Vj:L...,N.
i i

Theorem 2 (Olfati-Saber—Murray, [3]). Suppose that the topology of a network with a directed
graph of connections G is fized, and the graph G is strongly connected. The consensus protocol (25)
ensures that consensus on average is achieved if and only if the graph G is balanced.

If the graph is not balanced, the consensus value can be computed as follows. We introduce a
“weighted” Laplace matrix L similar to (18):

lii = Zaij, lij = —aij for ¢ 75 j (28)
JF

It is easy to see that system (24), (25) can be rewritten as

&= —Lax. (29)

Under the strong connectivity assumption, matrix LT hasa unique eigenvector that corresponds
to the zero eigenvalue [3]: L'd = 0. Using the theory of nonnegative matrices, one can show [3]
that this vector is nonnegative. Since it is nonzero, we get that 3, d; > 0. Due to (29) we find
that d'4 = 0, which immediately implies the formula for the consensus value.

Corollary 1. For a graph G satisfying Theorem 2, let d be the eigenvector of the transposed
Laplace matriz LT corresponding to the zero eigenvalue. Then d; > 0, Zij\;l d; > 0, and the value x,
18

N N
o=y diwi(0) /> ds. (30)
=1 1=1

Thus, in this case also the “consensus” value z, belongs to the convex hull of the set of initial
conditions.

For undirected graphs, it suffices to require that the graph is connected, which means that
rank L = N — 1. In this case the function

N

1
(I)G(l‘) = I‘TLZL‘ = 9 Z aij(l‘z‘ — a:j)2 (31)
ij=1
is nonnegative definite. Choosing the function
1
Viz) = 2HHCH2 (32)

as the Lyapunov function for system (24), (25), we get V = —®g(z) < 0, which implies that we
have achieved consensus (26).

In case of a balanced graph G the vector 1 = [1,...,1]" is an eigenvector of matrix L corre-
sponding to the zero eigenvalue, i.e., 1L = 0, and it follows from (30) that we have achieved
consensus on average.

Note that function ®g(z) can be considered as an objective function in the construction of
control protocols. Indeed, for a network of integrator agents in case of an undirected graph of
connections we can write the consensus protocol (25) as

u = —V@G(ZL‘). (33)
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Thus, the search for consensus in system (24), (25) occurs according to the gradient algorithm of
minimizing the function ®g(z).

It is interesting that (33) can also be interpreted as a fast gradient algorithm for control objects
of the form (24) with objective function Q(x) of the form (31). This becomes obvious if we write
Q(z) = VOq(x) u and compute the gradient of this expression with respect to u. Generalizing
this idea, one can extend the conclusions of the work [3] to networks whose agents’ dynamics is
nonlinear and defined by equations

A consensus protocol based on the fast gradient algorithm for network (34) has the form
u=—vg' Vog(z). (35)

Results on convergence of such protocols for passive nonlinear agents can be found in [109, 110].
The works [29-34] consider cases of more general passivated agents. A number of results on the
convergence of protocols (35) can be obtained for incrementally dissipative agents [111].

We note that results close to the results of [3] were first obtained in [102] for systems with
discrete time and switching topology, where the graph G = G(t) at every time moment is chosen
from a predefined finite set of strongly connected graphs.

Computing the rate of change for the Lyapunov function (32), it is easy to show that function (32)
decreases exponentially with decay rate

K= g%tf) Re X2(G(2)). (36)
In particular, for undirected graphs the rate of synchronization is characterized by algebraic con-
nectivity of the graph of connections.

The above-mentioned results have been extended in [3] to protocols with delays

wit) = —K Y ag(ai(t —mij) — 2t — 735))- (37)
JEN;

In case of identical delays (7;; = 7) it has been shown that if the graph of connections G is
fixed, undirected, and connected, then the protocol (37) ensures consensus if and only if either
0 <7 < mA\,/2, where A\, = max \;(L), or the hodograph of the frequency characteristic (Nyquist
plot) for agent r(s) = exp(—7s)/s does not encircle the point —1/\; for any k =2,...,n, where
A are the eigenvalues of the Laplace matrix L. Besides, for 7 = w\,, /2 the network has a globally
asymptotically stable periodic solution with frequency w = A,. A number of works (see [112-114]
and references therein) have generalized these results to the cases of a variable graph and nonuni-
form delay variables.

The pioneering results of [102] were significantly developed and in a most elegant and finished
form formulated in the paper by W. Ren and W.R. Beard [115]. The number of citations for this
classical paper approaches 2000. In [115], the authors consider reaching consensus in a system of
agents defined by integrators:

a':i:ui, Y = Xy, 121,,N (38)

The graph of connections G is considered as a directed graph and may change over time: G = G(t),
and G(t) is chosen from a finite set of graphs. To coordinate the states of agents, one uses the
consensus protocol

U; = -K Z (.TZ - a;j), (39)

JEN;(t)
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where N;(t) is the set of neighbors of the ith agent at time moment ¢ and K > 0. The control
objective is to reach asymptotic coordinate synchronization

Jim [2i(t) — (0] =0, ij=1,....N. (40)
which is called the consensus in [115]. In reality, one can show that consensus in the sense of a
stronger condition (26) under the assumptions shown below can also be achieved, and, moreover,
it is robust to the presence of delays in the communication system [116].

To formulate the result, we have to introduce the notion of a spanning tree in a graph (see the
details in the Appendix). A subgraph D of digraph G is called an incoming spanning tree if there
exists a vertex iy (the root) such that for every other vertex j there exists a directed path from ig
to j consisting of arcs from D. We also remind that the union of graphs Gy, ..., G that have the
same set of vertices is the graph G with the same set of vertices and set of arcs which is the union
of sets of arcs for the graphs G1,...,Gg.

The work [115] makes the assumption that the graph is piecewise constant and switches at
discrete time moments ¢; separated from each other with a positive delay (dwell time) 7; = t;41—t; >
7 > 0. Under this assumption, the following consensus criterion holds.”

Theorem 3 (Ren—Beard). The consensus protocol (39) ensures asymptotic consensus if there
exists an infinite sequence of disjoint uniformly bounded in length time intervals ¥; = [tij,tij )
such that the union of graphs on every interval ¥; has an incoming spanning tree.

One can show [117, 118] that in case of undirected and balanced graphs the Ren-Beard condition
can be significantly weakened, requiring only that the infinite union of graphs Gj has a spanning
tree starting from any moment. If the union of graphs Gy,..., Gy after a certain finite the time
moment does not have an incoming spanning tree, then the consensus cannot be reached.

Thus, the key condition for achieving consensus and synchronization is the existence of a span-
ning tree in the graph. It has been shown in [119], another foundational work (more than a thousand
citations), that violating this condition means that the graph has two nonempty “isolated” subsets
of vertices that do not include any one edge from the outside, and therefore the corresponding two
groups of agents are completely independent of each other and cannot synchronize.

The meaning of this condition also becomes clear from the lemma proven in [115]; the lemma
states that in order for a spanning tree to exist it is necessary and sufficient that the multiplicity of
the zero eigenvalue of the graph’s Laplace matrix equals one. This lemma is of primary importance
because it relates the properties of a network with the properties of its graph of connections. If we
accept the lemma, proof of the theorem for the case of a fixed topology becomes obvious. Indeed,
if we introduce the state vector of the network as X = [zq,...,z N]T, for a fixed topology the graph
dynamics of the network can be defined with a vector differential equation

X =—-KLX. (41)

If the multiplicity of the zero eigenvalue of matrix L equals one, the eigenspace of matrix L corre-
sponding to the zero eigenvalue is one-dimensional. But all solutions of system (41) converge to this
eigenspace since all other eigenvalues of matrix (—K L) have negative real parts (see Appendix).
Since the eigenvector corresponding to the zero eigenvalue of L has the form 1 =11,..., 1]T, limit

values of states of agents z7 will be the same: z7 = 27, i.e., we will achieve consensus. One can

" In [115], an additional condition is also assumed: delays 7; take values in an infinite set T that results from a
finite set © C (0, 00) by constructing all possible finite sums 01 + ...+ 0, where k > 1 and 6; € ©. A subsequent
book [27] shows (Theorem 2.33) that the latter condition can be discarded. Besides, protocol (39) can be replaced
with a more general protocol (25), where the weights a;;(¢) are uniformly bounded.
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show, moreover, that if the graph is balanced then the general limit value z* = z] equals to the
arithmetic average of the initial conditions (consensus on average).

It is important to note that the key lemma proven in [115], which relates the one-dimensionality
of the zero eigenspace of the Laplace matrix with the existence of a spanning tree in the graph,
is a special case of a much more general statement proven by Russian mathematicians R.P. Agaev
and P.Yu. Chebotarev back in 2000 [120]. In a later formulation [120, 121], the Agaev—Chebotarev
theorem says that the dimension of the zero eigenspace of the Laplace matrix for a digraph equals
the forest dimension of the graph (the forest dimension of a graph is the minimal number of trees in
its spanning forest; see Appendix). The Agaev—Chebotarev theorem lets one establish conditions
for the so-called cluster synchronization under which the dimension of the limit subspace of the
dynamical network exceeds one [122]. A sample problem where the graph does not have a spanning
tree is the containment control problem [14], where the control objective is to hold a group of agents
inside the convex hull of several completely independent leaders. The leaders are roots of the trees
that form the spanning forest.

5.4. Second Order Criteria for Consensus and Synchronization

It is very hard to get conditions for achieving synchronization and consensus for networks of
multidimensional agents. Despite the fact that the general Fax-Murray theorem formally implies
synchronization conditions for agents of an arbitrary order, it is often nontrivial to analytically
check simultaneous stability of several systems. The most successful in this regard has been an
extension of the results obtained for networks of first order agents to networks of agents defined
by second order differential equations. Such models correspond to the simplest mechanical and
physical systems that have inertia. The best studied case is the case of agents whose dynamics is
defined with a double integrator model corresponding to the motion of a material point.

Consider a network that consists of agents
.’ti:'l)i, 'UZ:’U,Z, 121,,N (42)
To coordinate the states of the agents, one uses a proportionally differential consensus protocol

ui=—a ) (z—x) =B ) (vi—v), (43)

JEN; JEN;

where o« >0, 8> 0. Using the definition of the Laplace matrix L = L;;, protocol (43) can be
rewritten as

N N
U; = —« Z LUIL’]’ — ,B Z Lijvj~ (44)
7j=1 j=1

It has been shown in [27, 123] that in order to achieve consensus in the network (42), (44) it
is necessary and sufficient that the graph of connections has a spanning tree, and coefficients of
protocol (44) satisfy

/82 Im ()\1)2
a 255N Re (A)[Re ()2 + Tm (A\)2]” ()

where \; are the eigenvalues of the graph’s Laplace matrix.
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Besides, if consensus is achieved then

N
vi(t) =Y &v;(0)

— 0,

j=1
N N (46)
.’El(t) — ijfl’](()) — ij’l)j(())t =0
j=1 J=1
for t — oo, where £ = col{&1,...,&n} is the unique nonnegative left eigenvector of matrix L corre-

sponding to eigenvalue 0 and satisfying equality £71 = 1.

Note that (45) holds for all a > 0, 8 > 0 if the eigenvalues of L are real, e.g., if the graph of
connections is undirected. The latter result remains true for a number of algorithms with variable
topology [27].

The consensus criterion (45) has been extended in [123] to networks (42) with delaying connec-
tions defined by the following protocol:

N

N
ui = —ay Lijzj(t —7) = 8 Lijoj(t — 1), (47
j=1

j=1

where 7 > 0 is the constant delay. Suppose that the network’s graph of connections has a spanning
tree, and (45) holds. Consensus in network (42), (44) is achieved if and only if the following relation
holds:

.0
7< min ', (48)
2<i<N Wy

where 0 < 0;7 < 27 satisfies relations

cosf;1 = [Re (\j))a — Im ()\i)wilﬂ]/wz?lv
sin Hil = [Re ()\i)wilﬁ + Im (Ai)a]/wizl’

wh = (NP8 + I8¢ + 4xi]1282) /2,

where \; are the eigenvalues of L.

Discretization (sampling) of controllers has an impact similar to the delaying effect. From
the implementation point of view, discrete algorithms have their advantages: we have to store
in memory the values of the measured output not on the entire delay interval but only at the
previous sampling instant. Besides, we get spare time for computation between sampling instants.
The work [124] studies the case when measurements of velocities are subject to discretization, and
coordinates are measured without delay. The control protocol in this case has the form

N N
ui(t) = —a_ Lijz;(t) — 8 Lijuj(te), (49)
=

j=1

where t; are the sampling instants, T = ¢, —t; is the sampling interval. Protocol (49)
corresponds to replacing the velocities in protocol (44) with finite differences x(t) — x(ty) for
0<t—t,<T.

The work [124] has established that if a digraph of network connections contains a spanning
tree, then in order to achieve consensus it is necessary and sufficient that

0<pB/a<l, fla,B,X,T)>0, i=2,...,N, (50)
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where

O{2
flasrm = (2

X (cosh((ciT) — cos(d;T))? — 4sin?(d;T) sinhQ(CiT)) ,

(Sin2 (d;T) — sinh? (ciT))

¢ = \/lal(Ii] — sen(a)Re (A:))/2;
di = \/Ial(I\i] + sgn(@)Re (X)) /2.

It is easy to see that relations (50) can be satisfied if we choose the parameters in such a way that
the 8/a ratio is close to one. For the case of a Laplace matrix with real spectrum, in particular for
undirected graphs, the formulation can be simplified.

Corollary 2. Suppose that the Laplace matriz of the graph of connections has real spectrum.
Then to achieve consensus it is necessary and sufficient that

0<pB<a VaNT#kr, i=2,...,N, k=0,1,.... (51)
In particular, consensus is achieved if

0<T<mV/aly. (52)

Thus, for networks with a real spectrum of the Laplace matrix the consensus is achieved for
a sufficiently small discretization step 1. This seemingly natural property does not hold if the
Laplace matrix has at least one complex eigenvalue, which has also been shown in [124].

A number of other consensus and synchronization criteria for second order agents can be found
in the books [14, 27], and works of the first author [125-129]. The works [125-129] also consider
more general synchronization criteria in networks of agents of arbitrary order under nonlinear con-
nections that generalize the circular and Popov’s absolute stability criteria to multiagent systems.
These results can also be generalized to networks of nonlinear agents that possess the incremental
dissipativity property [111].

5.5. Pinning Control

From the beginning of the 2000s, works began to appear on control over complex dynamical
networks in case when a (possibly significant) part of dynamics equations of the network does
not contain the control. This kind of control problems has been termed pinning control. The
idea of pinning control came from biology. An important example here is the worm C. elegans
which is widely used as a model organism in genetics, neurophysiology, development biology, and
computational biology. Although it is only about 1 mm long, the worm has a ramified neural system
with about 300 neurons and 5000 synaptic connection. For this worm, biologists have been able to
answer the question of how many neurons one has to control to pass the excitation to any neuron
in the organism. It turned out that to control this neural network one only needs 49 neurons, less
than 17% of their total number [133].

Another example relates to schools of fish and swarms of bees that migrate in search of food. It
turns out that a relatively small number of informed members (about 5 %) are able to influence the
behavior of other group members and their ability to move towards the intended goal [134]. From
the point of view of control theory, these 17 % of neurons and 5 % of bees can be considered as a
group of controllable agents through which one can control the entire complex network. Obviously,
such a control strategy is rather efficient and economical. On the other hand, natural questions
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arise: how many controllable nodes do we need to have in a network and which nodes should a
controlling influence be applied in order to achieve the goal in the most efficient way? The first
attempt to answer these questions was made back in 1997 [130]. Subsequently, a number of results
have been obtained in the works of G. Chen and his colleagues [131, 132, 136-138]. Here we show
one recent result for undirected network graphs, following [138]. For directed graphs, a similar
result is shown in [136].

Consider a dynamical network defined by equations

N
i = f(z) + ¢ aHzy+u;, i=1,....1

j=1

- (53)
l’Z:f(:Ez)+CZaZ]H$]7 Z:l+177N7

j=1

where [ is the number of nodes subject to control. We assume for simplicity that agents are
controlled by linear controllers

up = —ckpH(xp — ), k=1,...,1, (54)

where s = s(t) is the leader agent with model $ = f(s), kx > 0 are the feedback coefficients. We de-
note D = diag{k1,...,%;,0,...,0}. We call the function ¢ : R™ x R — R"™ uniformly V-decreasing,
where V' is a square matrix, if there exists a number p > 0 such that for all y,z € R” and t > 0 it
holds that

(z =)' V(W(zt) — ¥y, 1) < —pllz —y|* (55)

Suppose that there exist a diagonal positive definite matrix U symmetric to the positive definite
matrix V and a square matrix 7" such that function f(z)+ T is uniformly V-decreasing, and
matrix

UeV)p(A+D)® H+IT]

is symmetric and nonnegative definite. Then system (53), (54) achieves the control objective
z;(t) — s(t) — 0 for t = oo.

6. CONCLUSION

The above-mentioned results show that control over network systems has already turned into an
independent research direction that has a well-established mathematical formalism and important
nontrivial results. In this survey, we have only touched upon the main results and problems
that have defined the development of network control theory over the latest years. The utmost
importance of the listed results is that they let us reduce the study of complex dynamical networks
consisting of a large number of interacting agents to separate studies of the dynamics of an individual
agent in the network and to the study of spectral properties of the graph of connections. This shows
the characteristic features of network control problems.
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