
Tiny Nets: Project Report Two
A Small Network with Industrial Dreams

Jake Read, Dougie Kogut, Nick Selby, Patrick Wahl

November 2017

1 Overview of Progress

Since the last report and meeting, we have:

• Clarified our Objectives, Cost Functions and Con-
straints

• Clarified the value of TinyNet’s design against other
multipath routing protocols

• Approached completion of a network simulation tool
that will allow us to refine and measure TinyNet’s
performance

• Designed and Fabricated a new physical router with
an order of magnitude increase communication bitrate
and a sixfold increase in processing power, while stay-
ing under $20 in unit cost.

2 Objectives

Our goal is to develop and demonstrate a stateless multi-
path routing methodology for Networked Control Systems.

Networked Control Systems present unique constraints
to network design. Most critically, total throughput is not
a driving metric - messages tend to be very small, often
only one packet in length. Rather, NCS must run with
very low message delivery times, and most importantly
these message delivery times must be highly deterministic.
Control loops that run on multiple devices in the network
must be closed within set time periods.

No current network architectures offer multipath rout-
ing without also including global network state-machines.
When a node or a link is severed in stateful networks,
or when the networks see bottlenecks at particular nodes,
routing paths must re-converge. This process often takes
seconds, with a lower bound of 200ms. Because these con-
vergence algorithms add huge amounts of traffic to the
network, they make big impacts on message delivery de-
terminism.

With this, and Networked Control Systems in mind, we
impose the following constraints:

• Statelessness. The network should perform multi-
path routing without any node containing information
about the entire network graph.

• Scalability in Traffic. Unlike Ethernet, which has
a packet delay that scales linearly with traffic at par-
ticular switches, the system should be able to take
advantage of multipath routing to improve scalability
to be logarithmic in traffic.

• Short Decision Time. Unlike state-of-the-art mul-
tipath routing algorithms that maintain knowledge of
the entire graph and rebuild its spanning tree when-
ever a new node is advertised, networked control sys-
tems need to be able to respond quickly to changes in
graph structure and local route busyness.

• Minimal Overhead. The system should be arbi-
trarily implemented on microcontrollers in software
with system-designer defined hardware and network
parameters. There should be no large jacks, propri-
etary IC’s, or black box IC’s. TinyNets will be the
first open-source network for realtime control.

To accomplish our goal within the constraints, we
present the following key contributions:

• A real-time cost function, using next-hop buffer size
(i.e. a busyness metric) as well as historical hop-
count for per-packet dynamic re-routing, that in-
creases packet delivery-time determinism.

• Small packet sizing to reduce transmission time.

• An open-source routing protocol for arbitrary imple-
mentation in any embedded system, where computing,
physical space, and time is limited.

• A multipath routing protocol that does not require
global knowledge of the network topology.

Finally, to demonstrate the success of our project, our
project consists of the following deliverables:

• An implementation of our network architecture on a
real hardware system of twenty five nodes in variable
configurations.

• A simulation of our network architecture in JavaScript
on a network of 1000 to 10 000 nodes.

• Plot illustrating network utilization over time to en-
sure efficiency.

• Demonstration of dynamic packet re-routing in the
case of link/router failure.

• Comparison of dynamic re-routing time of our system
vs. network reconfiguration time in state-of-the-art
techniques like ECMP and OSPF.

• Demonstration of multipath utilization around busy
nodes.

Figure 1: Effects of Varying Parameters on Communica-
tion Time.

• CDF of packet latency in real world traffic scenar-
ios for our network compared to state-of-the-art tech-
niques like Ethernet/IP.

• Demonstration of individual component effects, such
as including the next-hop buffer size in the cost func-
tion or dynamic packet size, on performance metrics.

3 Proving Our Merit

Alternative methods to TinyNets for real-time control can
be broadly classified into two distinct categories: stateless
routing like Ethernet/IP and stateful routing like ECMP,
OSPF, SPB, and TRILL.

3.1 TinyNets vs. Stateless Routing

The state-of-the-art in real-time control networks is Eth-
ernet/IP [MT07], a stateless routing protocol which builds
a spanning tree and calculates cost as the hop count be-
tween nodes. From [LLL06], we know that the worst case
communication delay over Ethernet occurs when the num-
ber of frames attempting to pass through a single switch
is the greatest. For example, when a spanning tree orga-
nizes itself such that 24 stations are connected to a single
switching hub, a typical 144-bit message with a bit time
of 0.1 us would take more than 1.5 ms to finish sending
a single packet from all stations. If the packets could be
interconnected without the tree structure required by Eth-
ernet/IP, transmission time could be brought down to just
over 300 us.

Figure 1 compares strategies for reducing communica-
tion time. The parameter which has the largest effect on
message delivery time is the number of frames being com-
municated over a single switch. This is to be expected,
since that parameter will have a multiplicative effect on
the queuing delay. By sacrificing the spanning tree topol-
ogy and leveraging multipath routing without the added
processing delays and stateful nature of ECMP or other
link-state routing methodologies, we will drastically reduce
frame count and, therefore, communication time.

3.2 Convergence time in other routing
protocols

Convergence refers to the consistency in topological infor-
mation that routers have about their network. In our pro-
tocol, convergence will refer to the delay that occurs when
a node is removed from the network and the subsequent dy-
namic packet flooding and re-routing occurs. Convergence
is slightly different in our protocol since each node will not
have a complete view of the network graph. However, con-
vergence time from other routing protocols will serve as
good benchmarks for ours, as convergence time measures
the time it takes the network to operate normally in the
event of a node failure or of node busyness. Convergence
time when used in the paper will omit the time it takes to
detect unresponsive nodes.

We analyze the failure scenarios in 3 protocols, namely
OSPF, SPB, and TRILL, and conclude that our protocol
will perform on par or better than them when measuring
convergence time. In all 3 of these protocols, each node
must know the entire network graph to calculate the short-
est path between a source and destination. Thus, when
a node goes down, the entire network will halt and up-
date their view of the network graph, drastically decreas-
ing message delivery time determinism. In our protocol
when a node is withdrawn, only the neighbors of that node
will need to update their network data as the other nodes
with information on the downed-node will naturally up-
date their data upon standard communication from other
nodes. These protocols seem to imply that convergence
times of around 200ms are performant[FA09][ELC08].

Heavily associated with convergence time is the abil-
ity for routing protocols to consider multiple paths. Each
of the 3 protocols above offers strategies that allow this.
TRILL uses Fabric Shortest Path First (FSPF) to find an
alternate route upon topology change. OSPF and SPB can
be configured to use ECMP to maintain multiple paths
when there exists more than one path that has the same
cost. These 3 protocols offer dynamic path finding only in
certain scenarios whereas our protocol will naturally use
a greedily found path so long as there exists any path at
all — and it will do it without nearly as much message
flooding as the aforementioned protocols.

To actually measure the performance of our protocol in a
failure scenario, we propose several experiments to measure
the convergence time among the 4 protocols:

• An experiment that tests the latency of corner node
communication in a grid-structured network upon
node failure. This can be a good control test since
there are many shortest paths between corner nodes
and each protocol should be expected to perform sim-
ilarly since each handles the case of multiple shortest
paths well.

• An experiment that tests the latency between com-
munication of two nodes in a ring-structured network
upon node failure. Since there are exactly two paths
between any pair of nodes in such a network, this ex-
periment will almost solely test the convergence time
since the latency of the path chosen by each proto-

col will necessarily be the same and the timing of the
communication will only be different due to dynamic
path finding calculations.

• An experiment that tests the communication within a
fully connected (or near fully connected) graph upon
node failure. This experiment would serve to test the
goodput within networks since we know that flood-
ing occurs when nodes are removed and we want the
amount of ringing of these messages to be minimal.

4 Simulation

In addition to building a small hardware network of 25
nodes, we wish to demonstrate the scalability of our pro-
tocol. To do this we are developing a simulation and visu-
alization tool that allows us to model and artificially scale
towards thousands of nodes.

As of this report, the simulation can successfully model:

• Packet Transmission, Reception, Processing,
and Forwarding. The simulation can now handle
the transmission and reception of standard packets
and acknowledgements and their flood counterparts.
Furthermore, each node can use the information in its
routing table to decide along which port(s) to forward
it. Nodes can also recognize if they are the intended
packet recipient and acknowledge if necessary.

• Distributed Learning. Once packets begin flow-
ing across the network, each node begins learning the
fastest routes along which to send data. Nodes can do
this without storing an adjacency matrix, spanning
tree, or any other abstract graph model. Instead, the
method in which packets are handled serves a double
role of packet processing and continuously updating
individual node’s routing strategies.

The next task is to incorporate the final message type,
buffer update and heartbeat. After that, the simulation
should be able to model hardware failures and disconnects
statelessly.

4.1 Implementation

The simulation software is implemented using the open-
source Simbit library (https://github.com/ebfull/simbit),
which was originally designed for simulating peer-to-peer
networks like those on which Bitcoin runs. The user can
define the initial network topology as an array of arrays
representing the connections each node has on its various
ports. This topology can be created algorithmically mak-
ing it easy to scale the network up to thousands of nodes.

The simulation models the software running on each pro-
cessor in the network as a “manager” which handles in-
coming requests on each of its ports. Each manager keeps
track of its own lookup and buffer depth tables, and will
process incoming requests using the forwarding algorithm.
The managers send their actions to an asynchronously-
running network controller, which facilitates communica-
tion between them. Manual simulation actions can also

be fed to the managers in order to test different types of
communication on the network.

5 Hardware Development

Since the last report, we have developed a new router ca-
pable of 20 Mbps communication over a differential (RS-
485) UART PHY, with a 300MHz core clock for message
handling. Our first prototype ran on a 48MHz clock with
a maximum bitrate of 3Mbps. We believe that this will
mark a substantial objective decrease in TinyNet message
delivery times.

Figure 2: Our v0.1 Router.

Our new router also includes a pin header that breaks
out many of the processor’s other peripherals - GPIO,
PWM, SPI, USART, I2C, ADC’s etc - to allow develop-
ment of endpoint hardware. One such piece of hardware,
a brushless motor controller, is being developed.

References

[LLL06] K. C. Lee, S. Lee, and M. H. Lee. “Worst
Case Communication Delay of Real-Time Indus-
trial Switched Ethernet With Multiple Levels”.
In: IEEE Transactions on Industrial Electron-
ics 53.5 (2006), pp. 1669–1676. issn: 0278-0046.
doi: 10.1109/TIE.2006.881986.

[MT07] J. R. Moyne and D. M. Tilbury. “The Emer-
gence of Industrial Control Networks for Man-
ufacturing Control, Diagnostics, and Safety
Data”. In: Proceedings of the IEEE 95.1 (2007),
pp. 29–47. issn: 0018-9219. doi: 10 . 1109 /

JPROC.2006.887325.

[ELC08] V Eramo, M Listanti, and A Cianfrani. “Multi-
path OSPF performance of a software router in
a link failure scenario”. In: Telecommunication
Networking Workshop on QoS in Multiservice
IP Networks, 2008. IT-NEWS 2008. 4th Inter-
national (2008). doi: 10.1109/ITNEWS.2008.
4488153.

Figure 3: Our v0.2 Router: 300MHz core clock with
20Mbps RS-485 Driven UART.

Figure 4: An add-on endpoint, a Brushless Motor Driver,
to integrate TinyNet into robotics applications.

Figure 5: The router schematic.

Figure 6: The router board file.

[FA09] J Farkas and Z Arato. “Performance Analysis of
Shortest Path Bridging Control Protocols”. In:
Global Telecommunications Conference, 2009.
GLOBECOM 2009. IEEE (2009). issn: 1930-
529X. doi: 10.1109/GLOCOM.2009.5425776.

