Proceedings of the 2001 IEEE/RSJ
International Conference on Intelligent Robots and Systems
Maui, Hawaii, USA, Oct. 29 - Nov. 03, 2001

DCAﬁ A Distributed Control Architecture for Robotics

Lars Petersson®

!Center for Autonomous Systems,
Royal Institute of Technology,
Stockholm, Sweden.
larsp, hic@nada.kth.se

Abstract

Many control applications are by nature dis-
tributed, not only over different processes but also
over several processors. Managing such a sys-
tem with respect to the startup of processes, in-
ternal communications and state changes quickly
becomes a very complex task. This paper presents
a distributed control architecture which supports a
formal model of computation as described by [1].
The architecture is primarily intended for robot
control but has a wide range of potential appli-
cations. We motwate the design and implemen-
tation of the architecture by discussing the de-
sired properties of a robot system capable of do-
ing real-time tasks like manipulation. This leads
to functionality such as a process algebra control-
ling the life-cycle of the processes, grouping and
distribution of processes and internal communica-
tion transparent to location. Our implementation
does not in itself introduce any bottlenecks due to
& tree structure with local control ouver processes
which gives an efficient and scalable architecture.
At the end, an ezample scenario in which a fairly
advanced problem like opening a door using & mo-
bile robot with a manipulator arm is demonstrated
in the presented framework.

1 Introduction

Robotics involves the development of complex,
large control systems that must operate with a sig-
pificant and highly varying bandwidth. Usually,
software development takes place in groups and so
it is important to note that robotic control systems
will generally be modular in nature, consisting of
components from a number of programmers. This
paper presents the design and implementation of
an architecture (named DCA) for control of dis-
tributed systems, which supports communications

0-7803-6612-3/01/$10.00©2001 IEEE

2361

David Austin?

Henrik Christensen®

2Robotic Systems Lab,
Australian National University,
Canberra, Australia.
d.austin@computer.org

and modularity, and which is scalable to enterprise
level applications.

There have been a number of prior efforts to de-
velop an architecture suitable for (mobile) robotic
systems. Unfortunately, none has yet demon-
strated the potential to build large-scale, dis-
tributed systems for research and development for
mobile robotics. For commercial applications a
few systems such as ControlShell and Automa-
tion Ware have been developed but they are all
proprietary and not available for a wide range
of different platforms as often needed in R&D
efforts. Simmons has developed and extended
the Task Control Architecture (TCA} {2] over a
number of years. TCA is used on a centralised
process control model with a single supervisory
module. For communication TCA uses either of
the IPC or TCX packages based on a centralised
communications server. From a process point of
view the centralised communications poses a chal-
lenge for highly distributed systems. Also, the
Distributed Architecture for Mobile Navigation
(DAMN) [3], that in part is constructed on top
of TCA components, utilizes a centralised server.
In addition coordination is carried out by a cen-
tralised scheduling/arbitration mechanism which
is a strong constraint in a general system. The
Saphira architecture used by ActivMedia robots
was developed by Konolige [4]. Saphira has as
its core a common representation named Local
Perceptual Space (LPS) that is a type of shared
memory or blackboard for interprocess communi-
cation/coordination. LPS provides a convenient
mechanism for communication but at the same
time it introduces a particular model of computa-
tion and control that restricts highly distributed
systems due to bandwidth limitations. The Intel-
ligent Service Robot (ISR) architecture previously
developed at the Center for Autonomous Systems,

http://d.austinQcomputer.org

Sweden [5] was designed specifically for robotic
applications, built on the Adaptive Communica-
tions Environment (ACE) [6] package. This ar-
chitecture included a centralised supervisor and
its limitations clearly demonstrated the need for
distributed mechanisms for coordination.

It is also interesting to compare to other com-
mon distributed systems in existence today. For
example, the Internet Chat Relay Protocol (IRC)
[7] is a distributed “instant” messaging applica-
tion used to transmit messages rapidly all over
the world. However, the current implementation
of IRC is not scalable, it has a requirement that
all servers know about all other servers [7]. Work
is underway to address this problem but this ex-
ample illustrates the difficulties of creating a truly
decentralised system, even when the requirement
is obvious.

For process communication a number of new ef-
forts have been developed. A protocol worth con-
sideration is CORBA [8], which provides portable,
open-standard communications. However, today
there are only limited packages available that sup-
port truly real-time coordination. RT-CORBA,
which is a real-time extension to CORBA may be
a good alternative in the future. Another mech-
anism that is widely used is COM, which unfor-
tunately primarily is used on the Microsoft Plat-
form. Use of COM thus has limited use in a multi-
platform environment. Another communications
package, the Adaptive Communications Environ-
ment (ACE) [6] also provides for portable com-
munications. The package uses many advanced
templates which requires use of the latest C++
compilers and limits its availability for use on hard
real-time platforms.

The lack of satisfactory packages for the de-
velopment of robotic software systems has lead
us to develop a new system that addresses the
limitations of current packages. The new sys-
tem is called DCA. Section 2 presents the re-
quirements for a distributed control architecture
and also describes the design of the language that
has been implemented for our DCA. In Section 3
we describe the Modular Software Development
Environment (MSDE) which has been developed
to provide portable communications and process
management for real-time systems. Next, Sec-
tion 4 describes the implementation of DCA and
Section 5 presents an example of a real-time sys-
tem described in the framework of DCA.

2 Design Overview

The DCA system was designed with a mobile
robot performing manipulation in mind. In such
an application many critical issues arise and it is
therefore appropriate to discuss the requirements
for a distributed control architecture first.

e Modularity: An important consideration’
when designing any large, complex system is
to break it into pieces for development and
testing. This enables incremental progress of
the development and large groups to work to-
gether on the same system. Experiences from
earlier work show that it is often a consid-
erable amount of work to re-use code in a
new system. In a truly modular system where
there is no need to modify basic functionality,
a library of control modules can be built.

Solution: The motivation for the develop-
ment of DCA was to provide support for mod-
ular systems and to allow teams of program-
mers to cooperate on large systems. The lan-
guage is modular in nature and much effort
has been spent to ensure that the implemen-
tation of new modules is as simple as possible.

e Scalability: A robotic system that will be
solving anything more advanced than toy
problems require a structure that does not
suffer from scalability problems. In fact, this
is one of the more important requirements of
any robot control system. Our system re-
quires about 10-50 different processes to do
mapping, navigation, object recognition and
object manipulation. The communication
and control of these easily become a bottle-
neck limiting the expansion of the robotic sys-
tem. The scalability requirement has many
far-reaching consequences and must be kept
in mind at all stages of the design and im-
plementation. Many existing architectures do
not scale well because of a central bottleneck,
such as a centralised supervisor or a black-
board concept where a shared memory seg-
ment is used by all processes.

Solution: DCA has been designed with scal-
ability in mind. The DCA language (de-
scribed below) permits hierarchical construc-
tions and, using a hierarchical design, users
can implement systems with no centralised

portions which could be bottlenecks.
2362

¢ Efficiency: While computers are increasing
in speed very rapidly, it is still important to
.ensure that a control architecture is efficient
so that high frequency control tasks can be
undertaken. However, if there is a conflict
with the next point, i.e. flexibility and gen-
erality, it is in many cases better to sacrifice
efficiency over flexibility.

Solution: The approach here was to have
distributed event based decisions so that e.g.
a real-time task can be separated from non
real-time tasks if necessary. In addition, a
low overhead protocol is used in the commu-
nication.

e Flexibility and Generality: The architec-
ture for a distributed control system should
be as flexible and general as possible without
imposing any fixed structure. In research, it
is desirable to try out new ideas in a simple
manner rather than having optimal efficiency.

Solution: The communication options in
DCA allows the user to choose peer-to-
peer, many-to-one, or one-to-many commu-
nications. Also, pushing or pulling of data
can be decided by the user. Processes can
be executed on different hosts and are easily
shifted around if necessary.

e Theoretical foundation: The control of the

system should be made using a theoretically
sound foundation that allows synthesis and
verification. Robotic systems become increas-
ingly complex and it is therefore necessary to
be able to do verification of a system that has
been designed. This is especially an issue if
the control system is going to work in a pub-
lic setting where a failure in the control may
cause fatal accidents.

Solution: This was addressed by using a pro-
cess algebra adopted from a formal model of
computation which is described in detail in
[1]. This algebra provides the potential of di-
rect task-level specification in a manner which
is human friendly as well as suitable for au-
tomatic planners.

task,

that group can be given a name and has a

set of inputs and outputs. In fact, that group is in
itself treated as a single process from an external

view
“pro

er. In the following text it is assumed that a
cess” can be either a single process or a group

of processes.

Defining a process group requires the following
entries:

Process type and arguments: The pro-
cess group is given a name reflecting the func-
tionality and a variable number of symbolic
arguments. These arguments are set by any
other process group that instantiates this pro-
cess.

Host: The host on which the supervisor of
this process will run is specified. The super-
visor is a process controlling the internal exe-
cution of this process and it will be explained
in detail in Section 4.

List of instantiated processes: A process
group must instantiate the processes it will
use. If they have arguments, they have to be
set here, either symbolically or as constants.
There can be several instances of the same
process type. A common use of the arguments

is to pass the hostname on which it should
run.

External I/0: If the process group wants to
export certain inputs or outputs they should
be declared here. An external I/O is actu-
ally an internal I/O exported under another
name.

List of internal connections: Every in-
stance of a process is, if connected, associated
with one or more sets of internal connections.
Every set of connections is given a label which
can be referred to in the next entry. The pos-
sibility to assign several sets of connections to
the same instantiated process makes it possi-
ble to change connections during the execu-
tion of the process algebra. The convention
used is to connect outputs to inputs.

Internal event actions: This is the section
where the process algebra mentioned earlier

‘ 2.1 Language design is used. By using a set of operators, the exe-

cution of the instantiated processes in this
group is controlled. The operators and an
example are described in Section 2.1.1.

2363

The language that describes the control system
was designed to allow abstraction of functionality,
i.e. if a group of processes solves a well defined

A typical example of a process is shown below.
It acts as a compliant motion controller for a puma
arm. When the process “hit” detects high forces
it preempts the whole group with the use of the
preemption operator “#”.

process CompliantMotion(hostl, host2){

host{bost1}

instantiated_processes{
forcedata instof ForceSensor(hostl);
compliant instof CompliantCtrl(hostl);
puma instof Puma560(host2);
hit instof HitDetector(hostl);

}

external_io{
// This process has no extermal I/0

}

internal_connections(forcedata, 1bli){
forcedata, Outl -> compliant, Imni;
forcedata, Qutl -> hit, Ini;

}

internal_connections(compliant, 1bl1){
compliant, Outl -> puma, Ini;

¥

internal_event_actions{
// Perform compliant motion until the process
// ’hit’ detects abnormal forces and preempts
// the running group of processes

hit # (forcedata(lbli], compliant{1bli], puma)
}
}

2.1.1 The process algebra

Processes can generate different kinds of events
at run-time that need to be taken care of. The
events are e.g. DONE, ABORTED or error events
like SIGSEGV or similar. The paradigm used is a
completely event driven life-cycle of the instanti-
ated processes. A suitable model for this has been
developed in [1] where a number of operators are
defined. These operators are:

e Concurrent Composition: T = (P,Q). The
process T' behaves like P and running in
parallel.

¢ Sequential Composition: T' = P; Q. The pro-
cess T behaves like P until that terminates
and then behaves like process Q.

e Conditional Composition: T'= P? : Q,. The
process T behaves like process P until that
terminates. If P aborts, then T aborts. If P
terminates normally, then the value v calcu-
lated by P is used to initialize the process @,
and then T behaves like Q.

¢ Disabling Composition: T' = P#@Q. The pro-
cess T’ behaves like the concurrent composi-

tion of P and @ until either terminates, then
the other is aborted and T terminates.

e Synchronous Recurrent Composition: 7' =
PV :;Q,. This operator is recursively defined
as P ;;Q, = PY : Qu,; P’ ;Q,. If P ter-
minates normally, its calculated value v will
initialize @ (as in the conditional ’:’ opera-
tor). Then when Q terminates, the expression
becomes the same as the initial expression.
However, if P aborts, the whole expression is
aborted.

The value v passed between the processes can
be of any size, it is the responsibility of the receiv-
ing process to interpret the data.

The operators above can e.g. be used in an op-
portunistic planning mechanism. Consider an ex-
ample where the robot is tidying up a room where
the objects are randomly spread out. The robot
knows where every object is supposed to be, but
to solve the task, no particular order in which ob-
jects are put in place is implied. At the same time,
we do not want the robot to spend infinitely much
time searching for hidden objects so there must be
a timeout as well. A simplified task description of
this scenario could look like this:

timeout # (FindObjectA:PlaceA, FindObjectB:PlaceB,
FindObjectC:PlaceC)

where the three “FindObject” processes run
concurrently and when either one of them termi-
nates, the corresponding “Place” process will run.
The whole expression will not terminate until ei-
ther the timeout terminates or the objects A, B
and C have been placed.

Of course, in a more realistic implementation of
the above, there also have to be processes moni-
toring the availability of exclusive resources and
preventing a timeout from happening while plac-
ing an object that is found.

3 Modular Software Development Envi-
ronment

The Modular Software Development Environ-
ment (MSDE) provides support for the develop-
ment of modular software systems. The heart of
MSDE is a communications library called Gener-
alComms and a number of other services are used
to support modular programming.

2364

3.1 GeneralComms

GeneralComms provides an abstraction of com-
munication and event-based programming across
a number of platforms. GeneralComms was in-
spired by the Adaptive Communications Environ-
ment (ACE) package[6]. However, the ACE pack-
age requires a modern C++ compiler and results
in very large compiled programs. In addition to
event-based communications, GeneralComms in-
cludes methods for packing and unpacking mes-
sages in a portable manner.

3.2 NameServer

The NameServer allows processes to register
their communication parameters (e.g. host and
port) so that other processes can locate them by
name in a portable fashion. The NameServer in-
cludes the ability to locate peer NameServers and
to share information with them.

3.3 TimerServer

The TimerServer provides high-resolution tim-
ing events. Generally, hardware systems provide
a limited number of high-resolution timers (of-
ten one!) and so the TimerServer permits user
modules to share the hardware timer(s). The

TimerServer does very little processing and so has
a low overhead.

3.4 Executer

The Executer allows authenticated user pro-
grams to execute further programs on the same
host. Each host which will be used within the
distributed control system must have an Executer
running. The Executer allows the DCA to start
the components of the user’s control system.

3.5 DBManager

The database manager provides access to a
repository which can be used for configuration
data, passwords and other data. At present, there
is only support for a single, centralised database
but we plan to implement decentralised databases.
Decentralised databases are particularly impor-
tant for mobile robotics. Consider a team of mo-
bile robots moving around. To continue opera-
tion, each must have access to the database, how-
ever there are usually limitations on communica-
tions range. Therefore, we intend to replicate the
database on each of the robots and use the con-
cept of transactions to keep all of the databases

updated as well as is poésible in the face of an
intermittent communications link. ’

4 Distributed Control Architecture

The distributed control architecture builds on
the MSDE components described in Section 3
above and provides a suitable user interface.

The DCA consists of instances of two function-
ally different parts. There is a supervisor, DCAS,
that organises the execution of a subset of con-
troller modules.

4.1 The Supervisor (DCAS)

The supervisor has two means of receiving infor-
mation about the processes to run, a parser read-
ing a text file describing the control system or a
binary communications interface. When invoking
a control system, a DCAS is started with com-
mand line parameters specifying a text file. This
is then interpreted, causing the DCAS to start the
local controller modules it is in charge of as well as
starting sub-DCAS supervisors if necessary. The
information that is not used at the level of the
first DCAS is then passed down to the appropri-
ate DCAS on a sub level using the binary inter-
face (see Figure 1). This is then performed recur-
sively until the whole tree structure is started. It
is here important to note that even if a process is
“started” it is not running. To deal with real-time
issues, all processes are in fact started beforehand,
but inactive. When all processes are started, an-
other walk through the tree is made to connect
all the different modules. Also here, all connec-
tions are made beforehand but may be inactive.
Connections between different process groups, i.e.
managed by different DCAS, are resolved to go di-
rectly from one controller to another without pass-
ing any communication traffic through the DCAS.
That makes the communication between process
groups as efficient as within one group.

Further on, it is only when the root DCAS has
received a confirmation that the whole tree is suc-
cessfully configured that it gives the signal to run
the system. Every DCAS is then only taking care
of the local events, and only if the process group
emits an event, it is talking to the DCAS on the
level above.

Whenever a DCAS receives an event it is sent to
the process algebra interpreter in the DCAS. It is
from the impact of that event that the DCAS then
decides which processes to initialise, run, stop or
reconnect.

2365

DCAS
\
‘Enreller Controller DCAS
/
Controller DCAS
/
Controller Controller

Figure 1: A typical tree built from a definition file
read by the top DCAS. All subsequent DCAS re-
ceives their information from above. Connections
between controllers are not shown in this figure.
Note that every node in the tree can run on an
arbitrary host.

4.2 Controller Modules

The actual work is made by the controller mod-
ules which can be described as leaves in the hierar-
chy of processes. These have well defined commu-
nication interfaces with functions such as Init(),
Run() and Stop(). The core functionality is lo-
cated in a base class, so a user that wants to imple-
ment a new class of controller, only has to inherit
from that and implement the controller specific
parts. Typically, a user has to do these few steps:

e Assign names to inputs and outputs in a con-
structor.

e Write code to initialise sensors, hardware or
local variables in the Init() function.

e Start a timer in the Run() function if the con-
troller is repetitive.

e Write the control loop in a function Main-
Calc(). The inputs can be read, necessary
calculation is performed and the result is sent
to the corresponding outputs.

s Write code to gracefully disconnect from
hardware and stop the timer in the Stop()
function so that Init() can be called again.

5 Example Scenario

In this section a fairly advanced problem such
as opening a door is considered. This task demon-
strates a distributed problem, not only over sev-
eral processes but also over a number of hosts. The

: Host 1 Host 2, Host 3]
i | Visual _»| Motion :
0 Servoing Control l
: I
|
! Host 3 Host 3 i
! i
! .
| Approach —— HitDetector :
: !
1
: Host 3 Host 2 :
[.
; |Press Handle — DistDetector| |
!
: i
1
: Host 3 Host 3]
: I
' Gripper
, Door Open — Control :
! 1

- ew wm em mm me mm mm em mm ee e mm A = -

Figure 2: A complete door opening system. In this
example, host 1 is dedicated to computer vision,
host 2 controls the mobile platform and host 3
is running a real-time OS for manipulation tasks.
Note that in the case of a compound process, there
may be several hosts.

process algebra proves useful in sequencing the ac-
tions although there is not any opportunistic plan-
ning as in the previous example. This example
demonstrates that an otherwise very tedious task
of distributing the processes over several comput-
ers and making them talk to each other is feasible
in DCA. All the charachteristics of the system, in-
cluding the state changes, is captured in one place.

Figure 2 shows a complete door opening system
capable of locating the door handle by the use
of visual servoing, detecting distance to the door
with a laser range sensor, grasping and pressing
the door handle and finally opening the door. The
contents of compound processes are shown in the
Figures 3 - 6.

All processes to the left in Figure 2 deliver ve-
locity control signals to the motion controller pro-
cess, which in turn has a redundancy resolution
module inside as shown in Figure 3. In the case of
a mobile manipulator, or any redundant system, it
is necessary to distribute the motion in a suitable
way over the degrees of freedom available.

Figure 4 shows the most complex process group

where three different control schemes are fused
2366

Motion Control

XR4000

Host 3 Control

Redundancy
T Resolution

Host 3

Control

1
i Puma560
1
]

Figure 3: A process group taking care of redun-
dancy resolution and control of the XR4000 and
the Puma560.

Door Open
___________________________ .
: Host 3 Host 3]
' Compliant '
| |Force/Torque Control — :
1

) 1
1 |
i Host 2 Host 2 Host 3 }
t | XR4000 Model-based !
I | Odometry Control el Add Vel —
' |
1 \
i 1
i Host 3 Host 3]
1 | Puma560 Config !
1 | Joints Control — :
1

' 1

- e e mn e e s e e e ey W e W e e e e o = =

Figure 4: The process group solving the task of
opening the door. Three different control schemes
are fused into one velocity signal.

into one velocity control signal. This algorithm,
although not in this framework, is described in
the paper [9] and it proved successful in spite of
its simplicity.

There are two processes monitoring special con-
ditions (see Figure 5 and 6), the distance stop-
ping criteria and the hit detector. When these
processes terminate they are used to disable the
- concurrent processes.

A description of the task using the operators
described earlier can look like this:

MotionControl , ((VisualServoing # DistDetector) ;
((OpenGripper, Approach) # HitDetector)
CloseGripper ; PressHandle ; DoorOpen)

This states that the motion controller should
run at all times, while the visual servoing con-
tinues until a certain distance has been reached
and the distance detector disables it. Then, the

Distance Detector
- e e - - - -
: Host 2 Host 2 !
{ Laser Range !
1 Sensor Threshold :
1
I

Figure 5: A process group monitoring the distance
to the door.

Hit Detector

;' """""""" !
i Host 3 Host 3]
! Force !
) Force/Torque Threshold |
! :

- mm o s mm em e Em v mm e e o e we

Figure 6: A process group monitoring the forces
on the force/torque sensor.

gripper is opened while approaching the door han-
dle. When a hit is detected, i.e. the gripper has
reached the handle, that group is disabled and a
sequence of closing the gripper, pressing the han-
dle and opening the door is started.

An almost complete description of the processes
is shown in the Appendix. Note that due to space
limitations the internal connections are left out.

6 Conclusion

In this paper, we have presented an architecture
for building distributed control systems. DCA
has been specifically designed and implemented
for modularity and scalability. In addition, we
have used a process algebra for DCA, providing
a theoretically sound basis and permitting verifi-
cation. When designing and implementing DCA
we have sought to maintain flexibility and gener-
ality whilst achieving efficiency. The result is very
flexible and can achieve quite good real time per-
formance. The example scenario presented illus-
trates the ease with which modular systems can be
designed. In the absence of any convincing alter-
natives, we believe that DCA is a highly suitable
_tool for the implementation of distributed control
'systems.

Acknowledgements

This work was sponsored in part by the Swedish
Foundation for Strategic Research through its
Centre for Autonomous Systems at KTH.

2367

References

(1]
(2

3]

14)

18]

D. Lyons and M. Arbib, “A formal model of computation for
sensory-based robotics,” no. 3, pp. 280293, 1989.

R. Simmons, R. Goodwin, C. Fedor, and J. Basista, “Task
control architecture programmer’s guide to version 8.0.”
http://www.cs.cmu.edu/~reids, May 1997.

J. K. Rosenblatt, DAMN: A Distributed Architecture for
Mobile Navigation. PhD thesis, The Robotics Institute,
Carnegie Mellon University, 1997. CMU-RI-TR-97-01.

K. Konolige and K. Myers, “The saphira architecture for
autonomous mobile robots.” Book chapter, available at
http://www.ai.sri.com/~konolige/sapphira/.

M. Lindstrdém, A. Orebaeck, and H. Christensen, “A flexi-
ble architecture for a service robot,” in IEEE Conference
on Robotics and Automation, (Detroit, MI), p. (Submitted),
May 1999.

D. C. Schmidt, “Adaptive communications environment
(ace).” http://www.cs.wustl.edu/~schmidt/ACE.html.

C. Kalt, “Rfc 2810:
ftp:/ /ftp.irc.org/irc/docs/rfc2810.txt.

T. O. M. Group, “Corbafiiop 2.4 specification.” See
http://www.omg.org/.

Irc architecture.”

L. Petersson, D. J. Austin, and D. Kragic, “High-level control
of a mobile manipulator for door opening,” in Proc. of Int.
Conference on Intelligent Robots and Systems (IROS), 2000.

Appendix A

Realization of Door Opening

A realization of the door opening system in the

framework of DCA is shown below. Note that inter-
nal connections are omitted due to space limitations.

process MotionControl(hosti, host2){

b4

host{hostl}

instantiated_processes{
xr4000 instof XR4000Ctrl{host2);
puma instof PumaS60Ctrl(hostl);
redundancy instof RedundancyResolution(hostl);

}

external _io{
In = redundancy, In;

}

internal_event_actions{
// Run all processes concurrently
redundancy [1b11}, xr4000, puma

¥

process HitDetector(hosti){

host{host1}
instantiated_processes{
force instof ForceTorque(hostl);
threshold instof ForceThreshold(hostl);
}
external _io{
// No external I/0
}
internal _event_actions{
// Run both processes concurrently
force{lbll], threshold

process DistanceDetector(hostl){

}

host{hostl}
instantiated_processes{
laser instof LaserSemsor(hostl);
threshold instof DistanceThreshold(hostl);
}
external_io{
// No external I1/0
}
internal_event_actions{
// Run both processes concurrently
laser(1bli], threshold

process DoorOpen(hosti, host2){

}

host{hostl}

instantiated_processes{
force instof ForceTorque(hostl);
compliant instof CompliantCtrl(hostl);
xr4000 instof XR40000dometry(host2);
puma instof PumaS60Joints(hostl);
model instof ModelBasedCtrl(hostl);
config instof ConfigCtrl(hostl);
add instof AddVelocity(hostl);

}

external_io{
Out = add, Out;

Y

internal_event_actions{
// Run all processes concurrently
force[1bl1l], xr4000[1b11], puma[lbli],
compliant[1bl1i], model[1bl1l], config[1bll], add

}

process DoorOpenSystem(hostil, host2, host3){

}

host{host3}

instantiated_processes{
visualserv instof VisualServoing(hostl);
approach instof LinearTrajectory(host3);
presshandle instof PressHandle(host3);
dooropen instof DoorOpen(host3, host2);
motionctrl instof MotionControl(host3, host2);
hit instof HitDetector(host3);
distdetect instof DistDetector(host2);
opengrip instof GripperControl(host3, "open");
closegrip instof GripperControl(host3, "close");
}
external_io{
// No external I/0
}
internal_event_actions{
MotionControl ,
((VisualServoing(1bli] # DistDetector) ;
((OpenGripper, Approach{lbli}) # HitDetector) ;
CloseGripper ; PressHandle[lbl1l] ; DoorOpen[ibll])

process main(){

instantiated_processes{
dooropensyst instof DoorOpenSystem("ci.nada.kth.se"”,
"c2.nada.kth.se",

“c3.nada.kth.se");
}
internal_event_actions{
dooropensyst

}

2368

http://www.cs.cmu.edu/Nreids
http://www.ai.sri.com/Nkonolige/sapphira
http://www.cs.wustl.edu/Nschmidt/ACE.html
ftp://ftp.irc.org/irc/docs/rfc2810.txt
http://www.omg.org

