Multi-path OSPF Performance of a Software Router
in a Link Failure Scenario

Vincenzo Eramo !, Marco Listanti 2, Antonio Cianfrani 3

INFOCOM Department - University of Roma ” La Sapienza”
Via Eudossiana 18, 00184 Roma, Italy
lvincenzo.eramo@uniromal.it
’marco@infocom.uniromal.it
3cianfrani@net.infocom.uniromal.it

Abstract—In this paper we analyze intra-domain routing
protocols improvements to support new features required by real
time services. In particular we introduce OSPF Fast Convergence
and highlights the advantage of using an incremental algorithm
instead of Djikstra one to compute the shortest paths. Then
we propose a new multi-path incremental algorithm that we
have implemented in OSPF code of Quagga open-source routing
software. Analyzing an index characterizing OSPF performance
we compare our algorithm with an incremental algorithm not
supporting multi-path and demonstrate that, even if multi-path
support, the reconfiguration times are really similar; moreover,in
some cases, our algorithm performs better, especially in a link
failure scenario.

I. INTRODUCTION

OSPF [1] and IS-IS [2] are the most used intra-AS routing
protocols in today Internet: they are link-state protocols and
they use the well-know Djikstra algorithm to construct the
router routing table. Their performance can be characterized
with the convergence time index, which represent the time
for a network to reconfigure itself when a topological event
happens. The convergence time is influenced by three different
phases performed by routing protocols: detection, flooding and
Shortest Path First (SPF) computation. The detection phase
consists in identification of a topological modification and,
if no hardware detection mechanism is provided, depends on
Hello messages exchange between routers; the propagation
phase consists in exchange of Update messages from the router
discovering the modification to all other network routers,
through flooding mechanism; the SPF computation is the phase
in which the shortest paths to all destinations are discovered
using Djikstra algorithm.

In the last years there has been a great interest in real
time services, such VoIP and distibuted gaming, which require
high network performance in terms of delay and jitter. Actual
routing protocols are inefficient in such a scenario [3] because
they were designed to support best-effort traffic. In particular
convergence time has to be hardly reduced from the actual
40-50 seconds to 100-200 ms; this purpose can be achieved
introducing some optimizations in the three phases of the
convergence process [4]: the detection time can be reduced
introducing the milliseconds Hello mechanism, the flooding
time can be reduced making the flooding messages the ones

978-1-4244-1845-9/08/$25.00 © 2008 IEEE

197

with highest priority and the SPF computation can be reduced
using an incremental algorithm instead of the Djikstra one.

In this paper we introduce incremental algorithms for the
single-source shortest path problem and evaluate the applica-
bility of past algorithms in a networking scenario. In partic-
ular we remark the necessity of an algorithm that reacts to
link deletion, which represent the most damaging event in a
network, and insertion and that support multi-path: multi-path
support allows to calculate all possible shortest paths to all
destinations, so routers can perform load balancing for some
destinations through paths of minimum equal cost. So we de-
fine a multi-path incremental algorithm with these features and
evaluate its performance implementing it in the OSPF code of
an open-source routing software, Quagga [5]. The performance
evaluation is performed measuring the SPF computation time
index of an OSPF router [6] through white box measurements,
comparing our multi-path incremental algorithm with an uni-
path incremental algorithm.

The paper is organized into 4 sections. In section 2 incre-
mental algorithms definition, motivation and previous works
are described. Our multi-path incremental algorithms is de-
scribed with an example in section 3. In section 4 the main
numerical results of multi-path and no uni-path algorithms are
shown. Finally in section 5 conclusions and further research
items are illustrated.

II. INCREMENTAL ALGORITHMS
A. Motivations

An algorithm to evaluate the shortest paths from a router
to all AS destinations is the key element of a link-state
routing protocol. Actual intra AS routing protocols, such as
OSPF and IS-IS, make use of Djikstra algorithm: when a
topological change happens all the shortest path are calculated
from scratch, not using the old shortest paths information. This
kind of algorithm has always as start point a database, in which
each network element is described, and as a result a tree, even
if it is not a real tree as we discuss later, of paths of minimum
cost (SPT: Shortest Path Tree) which allows to construct the
router routing table.

The SPT computation, performed by Djikstra algorithm, is
the hardest operation for a router, because all CPU is used, but
also the most problematic. In fact when a topological change

IT-NEWS 2008

occurs and SPT computation is executing, the routing table
used not reflects the real network topology. In this way data
packets can pass through sub-optimal paths or even through
paths not more available and so they can be lost, degrading
network performance; this last case can happens when there
is a link failure, which represents the most dangerous event
for a network. In the last years some studies has been done
to characterize the evolution of a network topology, analyzing
routing protocols messages and SPTs successions. In particular
the work presented in [7], where an ISP has been analyzed for
a year, demonstrates as 65% of SPT computations produces
the same SPT that was used before the topological event
and in the other cases the SPT calculated is really similar to
the last one. These results highlights that Djikstra algorithm
is inefficient in a real scenario where only few operations
have to be done to calculate new SPT instead of a full
computation. These motivations have lead to the introduction
of a new class of algorithms for the computation of the
shortest paths, the incremental ones [8]-[11]. They make use
of the previous SPT to calculate the new one, computing the
only part of SPT influenced by the topological event. In this
way incremental algorithms meet real network requirements:
computing resources are saved, best paths are available first
and so routing convergence can be highly reduced.

B. Previous works

In the past years various incremental algorithms for the
single-source shortest path problem in a directed and oriented
graph has been presented. All this works has been conceived
for a most generic problem than a networking scenario, so we
analyze for each one its relevant proprieties.

The first interesting work has been presented by Rama-
lingam and Reps [8], which propose an algorithm reacting
to edge deletion or insertion. The most interesting aspect of
this work is the introduction of output complexity model,
in which the cost of a dynamic algorithm is evaluated as a
function of the number of output updates caused by each input
modification; this model, with some variations, has been used
by all other works. The weak point of the algorithm is that for
each node of the SPT it maintains only distance and outdegree
information and not the useful information to calculate the
sequence of nodes representing the shortest paths from root to
every topology node.

In [9] Frigioni et al. propose a dynamic algorithm reacting
to edge deletion, insertion and modifications of weight, which
maintains for each node a list of children and a single parent,
which means it does not support multi-path equal cost feature;
moreover two further structures, backward-level and forward-
level lists, are maintained for each node allowing the scanning
of a less number of edges when the algorithm is performed,
with respect to [8].

In [10], [11] Narvaez et al. propose two different incremen-
tal algorithms to be used when a link increases or decreases
its weight. The first one [10] is the dynamic version of three
static algorithms, Djikstra, Bellman-Ford and D Esopo-Pape,
while the second one [11] is based on a Ball-and-String model,

using an original search criteria. As for [9], the algorithm
maintains a completed SPT structure, with parent and children
list attributes for each node, but does not support multi-path
aspect.

C. Incremental algorithms in a networking scenario

Incremental algorithms described before can not be directly
used in a routing protocol because in a networking scenario
they have to satisfy specific requirement.

First at all an incremental algorithm has to be developed to
react to the most common events in a network. As demon-
strated in [7] edge deletion and insertion are the topological
changes that characterize an ISP routing protocol, while edge
metric modifications are really rare; a more deep analysis,
presented in [12], demonstrate that 70% of unplanned events
involves single links. We can conclude that deletion and
insertion of a single edge have to be events the algorithms
react to. In this way algorithms proposed by Narvaez et al.
can not be used as they have been presented.

A really important aspect that a routing protocol algorithm
needs to have is multi-path support. This feature consists in
calculating all shortest paths from a router to each destination.
This means that the algorithm needs to calculate a sub-graph
of minimum paths and this is the reason because we said
SPT is not a real tree. Multi-path additional information is
then computed by IP protocol: when the router receives a
packet directed to a specific destination, it can choose among
different next-hop routers, in general one for each shortest
path. In this way router can perform load balancing, choosing
a specific next-hop for each packet, or flow of packets, through
some functions [13]. Multi-path support, as well as allowing
load balancing, also permits to improve TCP performance:
in particular works in [14]-[16] demonstrate that with some
TCP modifications to support path diversity, transport-layer
performance can be increased. Multi-path is a feature of static
Djikstra algorithm while is not supported by Frigioni and
Narvaez algorithms.

Another aspect to be considered is that the algorithm has
to create a routing table: in this way it has to operate with
appropriate data structures. In particular for each node of the
SPT some attributes has to be maintained: distance from root,
list of parents (because of multi-path support), list of children
and list of next-hops. This last element represents the first
routers in the paths from root to node and it is just the next-
hop routers to be inserted in the routing table: it can be easily
calculated from the list of parents attribute of each node. The
algorithm of Ramalingam, unlike others, does not maintain
such a structure for SPT.

Finally, an incremental algorithm to use in a networking
scenario has to react to single edge deletion and insertion, to
support multi-path and to create specific data structures. In the
next section we introduce our incremental algorithm with the
previous aspects and highlights as multi-path support can be
used as a strong point to reduce network re-configuration time
especially in a link failure scenario.

198

Fig. 1. Example of edge deletion. a) Network graph with only a subset of edges with their cost; the solid thick arrows represents all the SP(G) edges. b)
Set of affected nodes after edge deletion. c¢) and d) SP(G) during the initialization phase of the algorithm; because of the multi-path, shortest paths to i and t
exist and the nodes i and t can be deleted from the set D(v). e) Final SP(G) after that the operations of the algorithm have been performed.

ITI. OUR MULTI-PATH INCREMNTAL ALGORITHM Our algorithm is a dynamic version of Djikstra static algorithm
which react to single link deletion and insertion; its relevant

In this section we introduce our multi-path incremental ot i .] .
characteristic is how it make use of multi-path information to

algorithm and show its behaviour in a link failure scenario.

199

speed up SPT computation.

The algorithm is composed by an initialization phase,
different for link deletion and insertion, and a main phase.
Initialization phase in case of link insertion and main phase
are modified versions of the same phases presented in [10]:
they have been modified to support multi-path and new data
structures our algorithm uses. The initialization phase in case
of link deletion is really innovative because allows to minimize
number of nodes affected by link deletion thanks to multi-
path information. A detailed description of our algorithm can
be found in [17], so in this section we highlight algorithm
behaviour in the case of link deletion through an example.

Before describing the example, we have to introduce some
notations regarding a network graph, in particular data struc-
tures used to maintain SPT information on each node. A node
v has different attributes: P(v) is the set of v parents, C(v)
is the set of v children , D(v) is the set of v descendents,
d(v) is v distance and N H (v) is the set of v next-hops. The
algorithm also maintains a data structure, the Candidate List
@, that contains nodes whose attributes must be updated; an
element in @ is the triple (v, P, dpew), Where v is the node to
be updated, P is the new set of parents and d,,, is the new
v distance.

Figure 1(a) shows a network graph, where each link is
bidirectional and weighted: for simplicity the two edges of
the same bidirectional link have the same cost. The solid thick
arrows are all the SPT links while the thin dashed ones do not
belong to SPT.

Let us suppose that link from node p to node v fails. In
the initialization phase of the incremental algorithm it is first
checked if link deleted belongs to SPT, otherwise the algorithm
stops, and then all nodes affected by failure are checked: this
set of nodes is represented in Figure 1(b) with the dashed
curve and contains all v descendents D(v), nodes belonging
to sub-tree having v as root.

The algorithm has to evaluate v set of parents to find
possible multi-paths: in fact if v has other parents and so other
paths of minimum cost, the algorithm only has to remove the
deleted path for v and recomputed next-hop attribute for all
its descendents. In this case the only parent of v is p so v is
unreachable. The search of external multi-path is performed
for all v descendents, scanned in an ordered way. For node [
there are not external multi-paths while for node ¢ there is an
external multi-path, with e as parent: ¢ is deleted from D(v),
its set of parents now contains the only node e and its distance
remains 40. The SPT at this time is represented in Figure 1(c).
Scanning v descendents, the algorithm find an external equal
cost path for node ¢ too. It has two parent: /, a v descendent,
and 7, just removed from set of v descendents. So t is in turn
removed from D(v), its distance is not changed and its set
of parents contains the only node 7. The last v descendents
is s and for it there are not external multi-path so it is set
to an unreachable state. The unreachable nodes maintain their
parent-child relationships (C(v) = I, P(l) = v, C(l) = s,
P(s) = l). After initialization phase the algorithm produces
the SPT represented in Figure 1(d).

The last thing to do in the initialization phase is to find
new shortest paths for node affected, through nodes external
to D(v). In particular all external incoming edges have to be
evaluated. In this case for node v the best path has a as parent
and a cost equal to 35, so the element (v, a, 35) is enqueued in
Q, for node [it has t as parent and a cost equal to 70, (I, ¢, 70)
is enqueued in @), and for node s it has ¢ as parent and a cost
equal to 63, (s, q,65) is enqueued in Q. Notice as during the
initialization phase the set of affected nodes has to be reduced
from five to three elements, using multi-path information.

In the main phase of the algorithm, the first element ex-
tracted from @) is v: its new possible distance (35) is obviously
better than the present one (infinite) so all its attributes,
except set of children, are changed (d(v) = 35, P(v) = a,
NH(v) = {p}); node v will certainly not be modified during
the last part of the algorithm, as explained in the correctness
analysis. All v descendents have to be updated, so d(I) = 45
, NH(l) = p, d(s) = 65 and NH(s) = p. The second
element extracted is s: its new possible distance is equal to
its distance, updated in the first step, so the algorithm simply
stores this new equal cost path adding ¢ to P(s) and z to
NH (s). Considering equal cost multi-path the router r can
reach node s through two different next-hop routers and so it
can balance traffic. The last element extracted from @ is [but
its new possible distance is bigger than the present one, so
nothing has to be done. The candidate heap is empty so the
algorithm stops. Final SPT is represented in Figure 1(e).

IV. PERFORMANCE EVALUATION
A. Test methodologies

As discussed in [17], complexity analysis cannot be a full
characterization of our incremental algorithm; so we have de-
cided to evaluate our algorithm behavior in a real environment,
implementing it in a routing protocol, OSPF, and measuring
protocol performance indexes in different topology scenario.
To implement incremental algorithm we have used a routing
software with an open code (Open-source routing software),
Quagga [5]. Quagga is designed for Unix operating systems
(Linux, BSD and Solaris) and it provides TCP/IP based routing
protocols, including OSPF, RIP and BGP. The most interesting
aspect of an open-source routing software is its flexibility
that allows evaluation of new routing feature, such as our
algorithm. We have implemented our multi-path algorithm in
OSPF code of Quagga software so that every time the deletion
or insertion of a single link happens, incremental algorithm,
instead of Djikstra one, is performed.

To characterize algorithm performance we have realized
white box measures, introducing specific timestamps in the
OSPF code; in particular these timestamps allows to calculate
exactly the SPT computation time, the time for the router to
compute all shortest paths. To evaluate this index we have
used the test configuration reported in Figure 2: DUT (Device
Under Test) is the PC based router equipped with Quagga and
our multi-path algorithm.

The network topology is made up of two real routers (a
testing PC and the DUT) and a variable number of fictitious

200

Emulated Network

LSA
DUT

Fig. 2. Test-bed for the evaluation of the SPF computation time in a Device
Under Test (DUT).

routers and networks, so that the DUT will have to find the
shortest paths to all the vertexes of the emulated network, a
vertex being either a network or a router. The testing PC is
running a C++ software allowing the generation of network
topology and the generation, and sending to the DUT, of Link
State Advertisements (LSA) describing the network topology.

B. Numerical results

Our multi-path incremental algorithm has been compared
to the uni-path algorithm proposed by Narvaez [10]; to do
that we have implemented uni-path algorithm, with some
modifications regarding mainly deletion support and data
structures used, in OSPF Quagga code. We have used a PC
with 2,6 GHz processor and 512 MB RAM. The comparison
has been carried out by emulating on the DUT real network
topologies measured within the Rocketfuel project [18]. In
particular we have considered the topology of Verio, an USA
Internet Service Provider whose network is composed by 893
routers and 4154 links. All of the link costs have been set to
10. We have decided to characterize algorithms performance
in a link failure scenario because it can cause data lost
and so network performance degradation. Moreover the SPF
computation time in an incremental algorithm depends on link
position and on type of change occurring, so we have chosen
to measure this time when the deletion of each single link
of the Verios network occurs; after each deletion we have re-
inserted the link just deleted and then we have performed the
successive link deletion measure. The SPF computation time
is reported in Figure 3 and 4 in the case of multi-path and
uni-path incremental algorithm respectively, as a function of
the link interested; we have decided to order links in x-axis
in decreasing order of SPT time in multi-path algorithm. In
both the figures we also report the time that the DUT takes
to run the static Dijkstras algorithm, which is different in the
two cases of uni-path and multi-path: in the first case Djikstra
compute a single path of minimum cost for each destination,
in the second case all shortest paths to each destination and
so we have two different values in the two cases. Obviously
Djiksra uni-path and multi-path times are independent of the
link position in which failure occurs.

Observing Figure 3 and 4 you can notice that SPT computa-
tion time is always less than static algorithm one. Furthermore
the average SPF computation time is 0,35 ms and 0,349 ms
in multi-path and uni-path algorithm respectively, while the
static SPF computation time is 8,116 ms and 7,407 ms in

)
T

Incremental uni-path
— — — Djikstra uni-path 4

~
T

Tspf (ms)
N w S (5, o

hwj. oo

. I . I L . .
0 500 1000 1500 2000 2500 3000 3500 4000
Link-id

Fig. 3. Performance evaluation of the uni-path incremental algorithm in the
case of link failure.

Incremental multi-path| |
— — — Djikstra multi-path

T
0 500 1000 1500 2000 2500 3000 3500 4000
Link-id

Fig. 4. Performance evaluation of the multi-path incremental algorithm in
the case of link failure.

multi-path and uni-path cases; this means that the incremental
algorithms allow a saving of about 95% in processing time
with respect the case in which the shortest paths would be
evaluated by using the Dijkstras algorithm. A really interesting
consideration is that SPT computation time trend is really
similar for the two algorithms despite multi-path algorithm
allows to compute a more complex structure and so more
information. In fact in the case of a uni-path algorithm SPT,
uni-SPT, is a tree and so it has exactly (N — 1) links, where
N is number of nodes; in the case of a multi-path algorithm
SPT, multi-SPT, is a graph, because all paths of minimum cost
have to be considered, and so it can have more than N links.
In Verio topology uni-SPT has 892 links while multi-SPT has
1429 links, so in this last case 500 links more belongs to
SPT causing a higher number of operations to be performed;
uni-SPT and multi-SPT are referred to the situation before
each link deletion, because after that SPTs can change their
structure.

Let us consider a subset of links to better understand the
results: we only consider the first 50 links because they cause
the highest SPT times in both algorithms. Results of this subset

201

TABLE I

MOST RELEVANT LINKS STATISTICS

Uni-path Multi-path
Link-id | Affiliation to SPT | Descendents | SPT time (ms) Affiliation to SPT Descendents | Multi-path descendents | SPT time (ms)
1 Yes 448 6,643 Yes 571 441 3,435
3 Yes 261 3,648 Yes 409 357 1,826
5 Yes 331 4,584 Yes 466 435 1,622
7 Yes 325 4,199 Yes 369 328 1,576
16 Yes 91 1,446 Yes multi — path 91 / 0,774
21 Yes 83 1,204 Yes multi — path 83 / 0,719
2 Yes 55 1,397 Yes 187 146 2,072
4 Yes 28 0,684 Yes 202 188 1,628
6 Yes 35 1,004 Yes 103 32 1,581
8 Yes 26 0,749 Yes 198 189 1,431
9 No / 0, 366 Yes multi — path 219 / 1,238
10 No / 0, 365 Yes multi — path 207 / 1,185

of links are presented in Figure 5. Moreover we have report
in Table I the most significant links with some informations.
In the case of uni-path algorithm we report for each link,
identified by its id, information about its affiliation to uni-
SPT, that can be Yes or No, and number of descendents in
uni-SPT; in the case of multi-path algorithm we report for
each link information about its affiliation to multi-SPT, that
can be Yes, No or Yes multi-path if link end-node has other
paths of minimum cost, number of descendents in multi-SPT
and number of descendents with other paths of minimum cost.

—— uni-path
6 —+— multi-path| 7

Tspf (ms)

. . . .
0 10 20 30 40 50
Link-id

Fig. 5. Performance comparision of the uni-path and multi-path incremental
algorithm in the case of link failure.

Analyzing results we can immediately see that multi-path
algorithm results for the first six points of Table I are really
better than uni-path algorithm ones. These points reflect a
common situation: in both multi-SPT and uni-SPT the deleted
link has many descendents but multi-path algorithm allows a
quicker SPT computation, two or three time faster than uni-
path algorithm, because it exploits multi-path information. For
example the first point regards a link with 448 descendents in
uni-SPT and 571 descendents in multi-SPT, but in this last case
441 descendents have at least another path of minimum cost
so the multi-path algorithm makes use of these information to
stabilize these descendents in the initialization phase without
inserting them into Candidate List structure. This result is the

most important for our multi-path algorithm; in fact in a link
failure scenario, which is the most dangerous for a network
because it can causes packet loss, when a lot of nodes are
involved, our algorithm allows a quick reconfiguration with
respect to an uni-path algorithm.

Another situation in which our algorithm performs better
is when the end node of deleted link has itself other paths
of minimum cost: this happens for links 16 and 21 in which
the number of descendents is 91 and 83 respectively and it is
the same in uni-SPT and multi-SPT, but multi-path algorithm
has better reconfiguration times, an half of uni-path algorithm
ones.

Obviously there are also situations in which uni-path al-
gorithm performs better. Links 2, 4, 6, and 8 have a lot of
descendents in multi-SPT and a few in uni-SPT so nodes and
links involved in SPT computation during uni-path algorithm
are much less and reconfiguration times are better; for example
link 4 has 28 descendents in uni-SPT while it has 202
descendents in multi-SPT. A most propitious situation for uni-
path algorithm is the ones of links 9 and 10: in this cases the
deleted link does not belong to uni-SPT while it belongs to
multi-SPT and it has also a lot of descendents. For example
link 9 does not belong to uni-SPT but it has 219 descendents
in multi-SPT; the difference in terms of SPF computation time
is limited because the end node of the deleted link has other
paths of minimum cost and so multi-path algorithm performs
a limited number of operations.

V. CONCLUSIONS

The aim of our work was to introduce the advantage of
using an incremntal algorithm in a networking scenario and
to propose a new incremental shortest path algorithm with
multi-path support. We have implemanted our algorithm in
Quagga open-source routing software and realized a test-bed
to calculate SPF computation time. Algorithm performance has
been compared with ones of a uni-path incremntal algorithm.
We have demonstrated that an incremntal algorithm allows to
higly reduce SPT computation time with respect to a static
algorithm and that our multi-path algorithm has the same
performance of a uni-path algorithm. Moreover we have seen
that multi-path algorithm performs better than uni-path one

202

when link deletion affects an high number of topology nodes,
because it can make use of multi-path information to speed up
SPT computation. In future topics, different network scenarios
will be evaluated and the proposed algorithm will be modified
to support multiple changes.

REFERENCES

[1] J. Moy. OSPF Version 2 , Request for Comments 2328, April 1998.

[2] R. Callon. ”Use of OSI IS-IS for routing in TCP/IP and dual environ-
ments”’, RFC 1195, December 1990.

[3] C. Boutremans, G. Iannaccone and C. Diot. Impact of link failures on
VoIP performance, in Proceedings of ACM NOSSDAYV, May 2002.

[4] C. Alaettinoglu, V. Jacobson, H. Yu, Towards Milli-Second IGP Con-
vergence, draft-alaettinoglu-ISIS-convergence-00, November 2000.

[5] Quagga Project [Online]. Available http://www.quagga.net/.

[6] V. Eramo, M. Listanti, A. Cianfrani, OSPF Performance and Opti-
mization of Open Source Routing Software, International Journal of
Computer Science and Applications, Vol. IV Issue 1, 2007 .

[7]1 D. Watson, F. Jahanian, C. Labovitz. Experiences With Monitoring
OSPF on a Regional Service Provider Network, In Proceedings of the
23rd International Conference on Distributed Computing Systems, page
204, IEEE Computer Society, 2003.

[8] G. Ramalingam and T. Reps. On the computational complexity of
dynamic graph problems, Theoretical Computer Science, vol. 158, pp.
233277, 1996.

[9] D. Frigioni, A. Marchetti-Spaccamela, and U. Nanni. Fully dynamic
algorithms for maintaining shortest paths trees, Journal of Algorithms,
vol. 34, pp 251-281, February 2000.

[10] P. Narvaez, K.-Y. Siu, and H.-Y. Tzeng. New dynamic algorithms for
shortest path tree computation, IEEE Transaction on Networking, vol.
8, pp. 734-746, 2000.

[11] P. Narvaez, K.-Y. Siu, and H.-Y. Tzeng. New dynamic SPT algorithm
based on a Ball-and-String model, IEEE Transaction on Networking,
vol. 9, pp. 706-718, 2001.

[12] A. Markopoulou, G. Iannaccone, S. Bhattacharyya, C.N. Chuah, and
C. Diot. Characterization of failures in an IP backbone, in IEEE
Infocom2004.

[13] D. Thaler, C. Hopps. Multipath Issues in Unicast and Multicast Next-
Hop Selection, RFC 2991, November 2000.

[14] H.Han, S. Shakkottai, C.V. Hollot, R. Srikant, D. Towsley. Multi-Path
TCP: A Joint Congestion Control and Routing Scheme to Exploit Path
Diversity in the Internet, IEEE/ACM Transactions on Networking , vol.
14, Issue 6, pp. 1260-1271, December 2006.

[15] Y. Lee, L. Park, and Y. Choi, Improving TCP performance in multipath
packet forwarding networks, Journal of Communications and Networks,
vol. 4, no. 2, pp. 148-157, June 2002.

[16] P. Key, L. Massoulie, D. Towsley. Combining Multipath Routing and
Congestion Control for Robustness, 40th Annual Conference on Infor-
mation Sciences and Systems, pp. 345-350, 2006.

[17] V. Eramo, M. Listanti, A. Cianfrani. Implementation and performance
evaluation of a multi-path incremental shortest path algorithm in Quagga
Routing Software, accepted at DRCN 2007, La Rochelle, October 2007.

[18] Rocketfuel Project [Online]. Available
http://www.cs.washington.edu/research/networking/rocketfuel/.

203

