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Abstract—This paper presents a biologically inspired approach
to two basic problems in modular self-reconfigurable robots:
adaptive communication in self-reconfigurable and dynamic
networks, and distributed collaboration between the physically
coupled modules to accomplish global effects such as locomo-
tion and reconfiguration. Inspired by the biological concept of
hormone, the paper develops the adaptive communication (AC)
protocol that enables modules continuously to discover changes in
their local topology, and the adaptive distributed control (ADC)
protocol that allows modules to use hormone-like messages in
collaborating their actions to accomplish locomotion and self-re-
configuration. These protocols are implemented and evaluated,
and experiments in the CONRO self-reconfigurable robot and in a
Newtonian simulation environment have shown that the protocols
are robust and scaleable when configurations change dynamically
and unexpectedly, and they can support online reconfiguration,
module-level behavior shifting, and locomotion. The paper also
discusses the implication of the hormone-inspired approach for
distributed multiple robots and self-reconfigurable systems in
general.

Index Terms—Self-reconfigurable robots, self-reconfigurable
systems, adaptive communication, dynamic networks, distributed
control, multi-agent systems.

I. INTRODUCTION

SELF-RECONFIGURABLE robots, in one class, are made
of autonomous modules that can connect to each other to

form different configurations. The connections between mod-
ules can be changed autonomously by actions of the modules
themselves. Furthermore, since each module is autonomous
(has its own controller, communicator, power source, sensors,
actuators, and connectors), modules in a self-reconfigurable
robot must collaborate and synchronize their actions in order to
accomplish desired global effects. Because of this dynamism,
solutions must be provided so that communication and control
among modules can be adaptive to topological changes in the
network.

As an example of a chain-typed self-reconfigurable robot,
Fig. 1 shows the CONRO robot system made of small-sized
modules that can autonomously and physically connect to
each other to form different configurations such as chains,
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Fig. 1. CONRO module and snake, insects, and rolling track configurations.

trees, (e.g., legged-bodies), or loops. The top left picture
shows a single autonomous CONRO module; the top right
picture shows a CONRO chain (snake) configuration with
eight modules, the bottom left has two CONRO insects (tree
configuration) each of which has six modules for legs and
three modules for the spine, and the bottom right is a CONRO
loop configuration with eight modules. Each configuration
can perform its locomotion, and the robot can autonomously
change configurations in limited situations. For movies and
more information about CONRO robots, including automatic
docking, please visit http://www.isi.edu/conro.

This paper addresses two basic problems for modular self-re-
configurable robots: how modules in these robots communicate
with each other when connections between them may be
changed dynamically and unexpectedly (thus changing their
communication routing), and how these physically coupled
modules collaborate, in a distributed manner, their local actions
to accomplish global effects such as locomotion and reconfigu-
ration. The solutions to these problems may also be applicable
to self-reconfigurable systems in general. Examples of such
systems include distributed sensor networks [1] and swarm
robotic systems [2].

Specifically, modules in a self-reconfigurable robot must
coordinate their actions to achieve given missions. Such
coordination must bedistributed, to host a large number of
autonomous modules;dynamic, to deal with the changes in net-
work topology;asynchronous, to compensate the lack of global
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clocks;scalable, to support shape-changing and enable global
efforts based on weak local actuators; andreliable, to recover
from local damages in the system and provide fault-tolerance.

In the context of communication, a self-reconfigurable robot
can be viewed as a network of nodes that can change and recon-
figure their connections dynamically and autonomously. Mes-
sages in normal practice are passed between connections using
named addresses (such as in the Internet) and are routed from the
source to the destination. Various addressing and routing strate-
gies are possible: Single messages can go from one module to
the next one; Broadcast messages go to all nodes directly; Mul-
ticast messages go to several specific nodes. Routing may be
best-effortas in the Internet, orsource-routedas in some su-
percomputers [3]. Dynamically changing the topology requires
continually determining the address and computing the route.
This needs continual rediscovery of connection topology at the
module level. Each module should discover and monitor un-
expected local topology changes in the network, and adapt to
such changes by reorganizing its relationships with other mod-
ules using theirconnectors. The concept of connector is widely
applicable to many different types of networks. For example, in
a supercomputing network the connectors are the channels that
connect nodes to their neighbors [3]. In a wireless network, the
connectors of a node are the channels available for communica-
tion. In self-reconfigurable robots, the connectors are physical
so that a link is a physical coupling and a network of nodes can
form physical structures with different shapes and sizes. For ex-
ample, the physical connectors in CONRO must be joined and
disjoined physically to change shape. Such changes in the net-
work topology make a CONRO robot a dynamic network.

The control of the motion or locomotion of reconfigurable
robotics, due to the frequent changes in topology, presents an-
other special challenge since the action messages may need to be
directed to the modules doing a specific function rather than to a
specific module. Ideally, the modules should coordinate their ac-
tions by their locations in the current configuration, not by their
names or identifiers. For example, the message should be sent
to the “knee” module in the present configuration not to module
#37 that perhaps was the knee on the old configuration. With
this ability, a module should be able to automatically switch its
behavior if its role/location is changed in the configuration. Fur-
thermore, a control message may also require concerted actions.
In other words, the message intent may be to execute an action
for the robot to “go forward” rather than require the sending
of several messages to swing the hip, bend the knee, bend the
ankle, and flex the toes and do this in spite of different modules
being swapped into and out of the configuration as the system
evolves.

This paper presents a biologically inspired approach to ad-
dress the above challenges and mimic the concept ofhormones
used among biological cells for both communication and con-
trol. A biological organizm can have many hormones acting si-
multaneously and without interfering with each other, each hor-
mone affecting only specific targeted sites. The main idea is
that a single “hormone” signal can propagate through the en-
tire network of modules, yet cause different modules to react
differently based on their local “receptors,” sensors, topology
connections, and state information. Computationally speaking,

a hormone signal is similar to a content-based message but has
the following unique properties: 1) it has no specific destination;
2) it propagates through the network; 3) it may have a lifetime;
and 4) it may trigger different actions for different receivers. No-
tice that hormone propagation is different from message broad-
casting. A single hormone may cause multiple effects on the
network and different nodes may behave differently when re-
ceiving the same hormone. Furthermore, there is no guarantee
that every node in the network will receive the same copy of
the original signal because a hormone signal may be modified
during its propagation.

To apply this idea to adaptive communication, we view each
module in a dynamic network as an active cell that can con-
tinuously discover its local topological changes and adjust its
communication strategy accordingly. We design the adaptive
communication (AC) protocol for all modules to discover and
monitor their local topology and ensure the correct propagation
of hormone messages in the network. This property holds re-
gardless of the changes in the network topology.

To support distributed control with dynamic network
topology, we view locomotion as the effect achieved by the
interaction on the environment of executing a certain set of
actions intrinsically in the robot. For instance, an automobile
moves forward when the running engine is engaged with the
wheels, provided among other things that there is enough
friction between the tires and the road. In our robot we execute
a certain set of intrinsic motions and the interaction of these
motions with the environment causes locomotion. Motion
execution is thus execution of module actions in the robot con-
nection topology plus its interaction with the environment. The
hormone concept described above in the context of topology
discovery applies equally well to motion execution. We have
designed the adaptive distributed control (ADC) protocol for
this purpose and applied it to the control of CONRO-like
self-reconfigurable robots.

The rest of the paper is organized as follows. Section II dis-
cusses the related work. Section III presents a general method
for topology discovery and the AC protocol. Section IV extends
the AC protocol to the ADC protocol for both distributed control
and adaptive communication among self-reconfigurable mod-
ules. Section V presents the experimental results of applying
the hormone-inspired control protocols to the CONRO robot.
Finally, Section VI discusses some fundamental questions about
the hormone inspired approaches and suggests future research
directions.

II. RELATED WORK

The communication and control of self-reconfigurable robots
is a challenging problem and the approaches for the problem can
be either centralized or distributed. From the viewpoint of flex-
ibility and reliability, the distributed approaches are generally
preferred for the self-reconfigurable robots. Two recent general
articles [4], [5] have provided a good survey of the field.

Related work for centralized control includes Yimet al.
[4], [6] in which configuration-dependent gait control tables
are used to specify actions for each module for each step.
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Chirikjian et al. [7], [8] study the metric properties of re-
configurable robots and Chirikjian and Burdick [9] propose
a mathematical model for controlling hyper-redundant robot
locomotion. Kotay and Rus [10] propose a control algorithm
for controlling molecular robots. Castanoet al. [11], [12] use
a centralized approach for controlling locomotion and discov-
ering network topology. Rus and Vona [13] use the Melt-Grow
planner for the Crystalline robot. Unsalet al. [14] utilize a
centralized planner for bipartite self-reconfigurable modules.
Most recently, Yoshidaet al. [15] and Kamimuraet al. [16]
demonstrate the online reconfiguration (reconfiguration while
locomotion) using a centralized method.

Related work for distributed control includes Fukuda and
Kawauchi’s control method for CEBOT [17], the series of
control algorithms proposed by Murataet al. [18]–[22] for
self-assembly and self-repairing robots, the hormone-based
distributed control method proposed by Shenet al. [23]–[26],
and the role-based control method by Stoyet al. [27], [28].
Most recently, several distributed methods have been proposed
for lattice-based robots, including a “secent”-based approach
by Bojinov et al. [29], a goal-ordering based approach by Yim
et al. [30], a parallel planner by Vassilvitskiiet al. [31], and an
automata-based approach by Butleret al. [32].

The distributed control method proposed in this paper
is different from the previously proposed distributed control
methods in several aspects. First, a module selects actions based
on multiple sources of local information, including the local
topology, the sensory inputs, the local state variables, and most
importantly the received hormone messages. Second, the local
topology defined in this paper distinguishes the connectors of a
neighboring module and treat different connectors differently.
In other words, a module knows not only that its connector

has a neighbor, but also the name of the connector to
which is connected. This provides more power for topology
representation. Third, the method proposed here can deal with
both locomotion and reconfiguration using the same unified
framework. This has been demonstrated through the ability of
distributedonline reconfiguration on a chain-based real robot.
To the best of our knowledge, such a demonstration has not
been done before. Fourth, the method described here has wider
application scope than the Cartesian lattice, and can support
modules that have internal deforming actions such as pitch,
yaw, and roll.

The concept of hormone has previously inspired several
researchers to build equivalent computational systems. Au-
tonomous decentralized systems (ADS) [33], [34] is perhaps
the earliest attempt to use hormone-inspired methodology to
build systems that are robust, flexible, and capable of doing
on-line repair. In ADS, the Content Code Communication Pro-
tocol was developed for autonomous systems to communicate
not by “addresses” but by the content of messages. The ADS
technology has been applied in a number of industrial problems
[35], and has the properties of on-line expansion, on-line main-
tenance, and fault-tolerance. However, ADS systems have yet
been applied to self-reconfiguration. Another similar approach
is proposed in [36] where markers are passed in a network
to dynamically form sets of nodes for performing parallel

operations. Finally, biologically inspired control methods have
also been used for robot navigation [37].

III. A DAPTIVE COMMUNICATION

As described above, the modules in a self-reconfigurable
robot are reconfigured structurally. The physical interpretation
of this action is that shape morphing occurs. The connectivity
interpretation is that the modules have a new communication
network topology. The control implication is that global actions
such as locomotion require a re-computation of the local actions
to be executed by the individual modules. These local actions
depend on the position of the module in the reconfigured struc-
ture. To the best of our knowledge, such control approach can
support some unique and new capabilities, such as distributed
and online bifurcation, unification, and behavior-shifting,
which have not been seen before in robotics literature. For
example, a moving snake robot with many modules may be
bifurcated into pieces, yet each individual piece can continue to
behave as an independent snake. Multiple snakes can be con-
catenated (for unification) while they are running and become
a single but longer snake. For behavior-shifting, a tail/spine
module in a snake can be disconnected and reconnected to the
side of the body, and its behavior will automatically change to
a leg (the reverse process is also true). In fault tolerance, if a
multiple legged robot loses some legs, the robot can still walk
on the remaining legs without changing the control program.
All these abilities would not be possible if modules could
not cope with the topological changes in the communication
network.

In this section, we describe an adaptive communication pro-
tocol for dynamic networks such as those used in self-recon-
figurable robots. Using this protocol, modules can communi-
cate even if the topology of the network is changing dynami-
cally and unexpectedly. Communication with this protocol will
be shown to be robust, flexible, and will allow reconfiguration
while the network is in operation. The reconfiguration can ei-
ther be self-initiated, superimposed by external agents, or in re-
sponse to sensor interaction with the environment.

A. Self-Reconfigurable Modules and Networks

To illustrate the concept of adaptive communication in a self-
reconfigurable network, we will use the CONRO robot as an
example. As shown in Fig. 1, a CONRO robot consists of a
set of modular modules that can connect/disconnect to each
other to form different robot configuration. The detail of a single
module is shown in Fig. 2. Each CONRO module is a gen-
eralized-cylinder that is 4.0 inch long and 1.0 inchin diam-
eter. Every module is autonomous, self-sufficient, and equipped
with a microcontroller, two motors, two batteries, four connec-
tors for joining with other modules, and four pairs of infrared
emitter/sensor for communication and docking guidance.

The movements of modules are actuated by two servomotors,
which provide the pitch (up and down) rotation called DOF1
and the yaw (left and right) rotation called DOF2. With these
two degrees of freedom, a single module can wiggle its body
and has a limited ability to move. However, when two or more
modules connect to form a structure, they can accomplish many
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Fig. 2. The schema for a CONRO self-reconfigurable module, and four possible connections to neighbor modules.

different types of locomotion. For example, a chain of modules
can mimic a snake or a caterpillar, a body with legs can perform
insect or centipede gaits, and a loop can move as a rolling track.
Karl Sims [38] has studied this question in details and developed
a system for discovering the motion possibilities of different
block structures. To some extent, CONRO provides a physical
implementation of his results.

The control program on a CONRO module is written in the
BASIC language and is running on the on-board STAMP II mi-
crocontroller that has only 2 kbytes of ROM for programs and
32 bytes of RAM for variables. Such a tight computational re-
source poses additional challenges for the control program. We
believe that the simplicity and efficiency of hormone-inspired
approach has contributed greatly to the successful implementa-
tion of all functions and programs on board.

CONRO modules can connect to each other by their docking
connectors located at either end of each module. At one end,
called the module’sback, is a female connector, which has two
holes for accepting another module’s docking pins, a spring-
loaded latch for locking the pins, and an shape memory alloy
(SMA)-triggered mechanism for releasing the pins. At the other
end of a module, three male connectors are located on three sides
of the module, calledfront, left, andright. Each male connector
consists of two pins. When a male connector and a female con-
nector are joined together, we call the connection anactive link.
The connected modules are calledneighbors.

CONRO modules communicate with each other through ac-
tive links. Each connector has an infrared transmitter and an in-
frared receiver, and they are arranged in such a way that when
two connectors are joined to form an active link, the transmitter
and the receiver of one side are aligned with the receiver and
the transmitter on the other side, forming a bidirectional local
communication link. In CONRO modules, such communication
mechanism is established by a handshake between the sender
and the receiver. When the sender wants to send a message, it
turns on its infrared transmitter and waits for the receiver to re-
spond. When the receiver detects the signal, it will turn on its
transmitter and inform the sender and both parties will immedi-
ately enter the serial communication protocol (RS232 with 9600

Fig. 3. A top view of a self-reconfigurable communication network among
nine CONRO modules.

baud rate) and the message will be sent and received. If there is
no receiver at the other end, then the sender will not get any re-
sponse and the procedure will return a timeout failure.

Fig. 3 shows a network of nine modules (94 connectors)
forming a hexapod. There are eight active links (which use 16
connectors) and the rest of 20 connectors are still open. Each
active link uses two pairs of aligned infrared transmitters and
receivers for communication. As we can see from this example,
a CONRO robot can be viewed as a communication network
of connected modules as well as a physically connected set of
modules.

Based on the above description, we define a self-reconfig-
urable communication network as a connected, undirected
graph that has the following properties:

1) each node is a self-reconfigurable module;
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Fig. 4. Some example topological types (T0, T1, T2, T5, T6, T16, T21, T29)
of CONRO modules (f; l; r; b are connectors).

2) each node has finite, named connectors. Two connectors
of two modules can join and form an active link but one
connector can only be in at most one active link.

3) each edge is an active link;
4) the topology of the network may change dynamically, and

active links may appear or disappear dynamically;
5) nodes can only communicate through active links;
6) nodes do not know the network size nor have unique IDs.

B. The Representation of Local Topology

We represent the local topology of a CONRO module in a
self-reconfigurable network based on how its connectors are
connected to the connectors of its neighbor modules. Shown
in Fig. 4, a module is type T0 if it does not connect to any
other modules. A module is type T1 if its back connector,, is
connected to the front,, of another module. A module is type
T2 if its front connector is connected to the back of another
module. A module is type T16 if its back is connected to the
front of a neighbor and its front is connected to the back of
another neighbor. A module is type T21 if its back is connected
to the front of another module, and its left,, and right, ,
are connected to the backs of other two modules, respectively.
Note that every active link is a pair of the connector(the
only female connector in a CONRO module) and one of the
three male connectors, , and . There are 32 types of local
topology as listed in Table I and these types are ordered by the
number of active links they have. For example, type T0 has no
active links; types T1 through T6 have one active link, types
T7 through T18 have two active links, types T19 through T28
have three active links, and types T29 through T31 have four
active links.

C. The AC Protocol

Using the concept of hormone messages and local topological
types defined above, we can define the AC protocol for continual
rediscovery of network topology and ensure adaptive commu-
nication. Fig. 5 shows the pseudo-code program for the AC pro-
tocol. The main procedure is a loop of receiving and sending
(propagating) “probe” hormones between neighbors, and se-
lecting and executing local actions based on these messages.
A probe is a special type of hormone that is used for continu-
ously discovering and monitoring local topology. Other types of
hormones that can trigger more actions will be introduced later.
All modules in the network run the same program, and every
module detects changes in its local topology (i.e., the changes
in the active links) by sending probe messages to its connectors
to discover if the connectors are active or not. The results of this
discovery are maintained in the vector variable , where

TABLE I
LOCAL TOPOLOGYTYPES OFCONRO MODULES

is the number of connectors for each module (e.g., for
a CONRO module). If there is no active link on a connector
(or an existing active link on is disconnected), then sending
of a probe to will fail and will be set to nil. If a new
active link is just created through a connector, then sending a
probe to will be successful and will be updated. After
one exchange of probes between two neighbors, both sides will
know which connector is involved in the new active link and
their LINK variables will be set correctly1 .

The AC protocol has a number of important properties that
are essential for adaptive communication in self-reconfigurable
networks.

Proposition 1: Using the AC protocol, all modules can adapt
to the dynamic topological changes in the self-reconfigurable
network and discover their local topology in a time less than two
cycles of the main loop. The updated local topology information
is stored in .

To see this proposition is true, notice that initially all LINK
variables have a nil value. If a module has a neighbor on its
connector , then will be set properly when this module
receives a probe on that connector. Since every module probes
all its connectors in every cycle of the program, the
will be updated correctly with at most two cycles.

Proposition 2: If the network is acyclic graph, then the AC
protocol guarantees that every nonprobe message will be prop-
agated to every module in the network once and only once. The
time for propagating a hormone to the entire network is linear
to the radius of the network graph.

To see that Proposition 2 is true, notice that when a new mes-
sage is generated (e.g., [Test, *, *, *] in Fig. 5), it will be sent to

1For example, if an active link is created between the connectorx of module
A and the connectory of module B, thenLINK[x] = y for module A,
and LINK[y] = x for module B. TheLINK[C] variable represents the
local topology type of a CONRO module. For example, a module is type
T0 if LINK[f; l; r; b] = [nil; nil; nil; nil]; type T2 if LINK[f; l; r; b] =
[b; nil; nil; nil]; and type T21 ifLINK[f; l; r; b] = [nil; b; b; f ].
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Fig. 5. The AC protocol.

all active links from that module. When a module receives a hor-
mone, it will send it to all active links except the link from which
the hormone is received. Since the network is acyclic, the gen-
erator module can be viewed as the root of a propagation tree,
where each module will receive the hormone from its parent,
and will send the hormone to all its children. The propagation
will terminate at the leaf nodes (modules) where there is no ac-
tive links to propagate. Since the tree includes every module, the
hormone reaches every node. Since every module in the tree has
only one parent, the hormone will be received only once by any
module.

For networks that contain loops (cyclic graphs), the AC pro-
tocol must be extended to prevent a hormone from propagating
to the same module again and again. To ensure that each hor-
mone is received once and only once by every module, addi-
tional local information (such as local variables) must be used to
“break” the loop of communication. We will illustrate the idea
in the ADC protocol when we describe the control of rolling
tracks, which is a cyclic network.

IV. HORMONE-INSPIREDDISTRIBUTED CONTROL

As described above we want a distributed control protocol
that is identity free but supports a module to select its actions
based on its location in the network. Since hormones can trigger
different actions at different site and every module continuously
discoveries its local topology, such a control method can be de-
fined based on the hormone messages.

To illustrate the idea, let us first consider an example of how
hormones are used to control the locomotion of a metamorphic
snake robot. Fig. 6 illustrates a 6-module CONRO snake robot
and its caterpillar gait. The types of modules, from the left to
the right, in this robot are: T1 (the head), T16, T16, T16, T16,
and T2 (the tail). To move forward, each module’s pitch motor
(DOF1) goes through a series of positions and the synchronized
global effect of these local motions is a forward movement of
the whole caterpillar (indicated by the arrow). In general, the
wavelength of the gait can be flexible (e.g., a single module can
craw as a caterpillar). The example in Fig. 6 shows a wavelength
of four, but other wavelengths can be defined similarly.
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Fig. 6. A caterpillar (or nessie) movement (b andr are connectors, and+45
and�45 are DOF1).

TABLE II
CONTROL TABLE FOR THE CATERPILLAR MOVE

To completely specify this gait, one can use a conventional
gait control table [6] shown in Table II, where each row in the
table corresponds to the target DOF1 positions for all modules
in the configuration during a step. Each column corresponds to
the sequence of desired positions for one DOF1. The control
starts out at the first step in the table, and then switches to the
next step when all DOF1 have reached their target position in the
current step. When the last step in the table is done, the control
starts over again at step 0. As we can see in Table II, the six
columns correspond to the six module’s DOF1 in Fig. 6 (the
leftmost is M1, and the rightmost is M6). The first row in this
table corresponds to Step 0 in Fig. 6.

The problem of this conventional gait table method is that it
is not designed to deal with the dynamic nature of robot config-
uration. Every time the configuration is changed, no matter how
slight the modification is, the control table must be rewritten.
For example, if two snakes join together to become one, a new
control table must be designed from scratch. A simple con-
catenation of the existing tables may not be appropriate be-
cause their steps may mismatch. Furthermore, when robots are
moving on rough ground, actions on each DOF cannot be deter-
mined at the outset.

To represent a locomotion gait using the hormone idea, we
notice that Table II has a “shifting” pattern among the actions
performed by the modules. The action performed by a module

at step is the action to be performed by the module
at step . Thus, instead of maintaining the entire control
table, this gait is represented and distributed at each module
as a sequence of motor actions . If
a module is performing this caterpillar gait, it must select and
execute one of these actions in a way that is synchronized and
consistent with its neighbor module. To coordinate the actions
among modules, a hormone can be used to propagate through
the snake and allow each module to inform its immediate
neighbor what action it has selected so the neighbor can select
the appropriate action and continue the hormone propagation.
This example also illustrates that hormones are different from
broadcasting messages because their contents are changing
during the propagation.

Fig. 7. The ADC protocol.

TABLE III
RULEBASEFOR THECATERPILLAR MOVE

A. The Adaptive and Distributed Control Protocol

To implement the hormone-inspired distributed control on the
AC protocol, each module must react to the received hormones
with appropriate local actions. These actions include the com-
mands to local sensors and actuators, updates of local state vari-
ables, as well as modification of existing hormones or genera-
tion of new hormones. Modules determine their actions based
on the received hormone messages, their local knowledge and
information, such as neighborhood topology (module types) or
the states of local sensors and actuators.

For these purposes, we specify the ADC protocol listed in
Fig. 7. The ADC protocol is the same as the AC protocol except
that there is a RULEBASE and the procedure SelectAndExe-
cuteLocalActions( ) is extended to select and execute actions
based on the rules in the RULEBASE. The selection process is
based on: 1) local topology information (such as LINK[ ] and
the module type); 2) the local state information (such as local
timer, motor, and sensor states); and 3) the received hormone
messages. Biologically speaking, the rules in RULEBASE are
analogous to the receptors in biological cells, which determine
when and how to react incoming hormones. A module can gen-
erate new hormones when triggered by the external stimuli (e.g.,
the environmental features such as color or sound) or by a re-
ceived hormone message. When there are multiple active hor-
mones in the system, the modules will negotiate and settle on
one hormone activity.

To illustrate the idea of action selection based on rules, let
us consider how the caterpillar movement is implemented. The
required rules for this global behavior are listed in Table III. In
this table, the type of the hormone message is called CP, and
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the data field contains the code for DOF1. The other fields of
hormones are as usual, but we only show the field of sender
connector (sc) for simplicity.

All modules in the robot have the same set of rules, but they
react to hormones differently because each module has different
local topology and state information. For example, the first four
rules will trigger the head module (type T1) to generate and
send (through the back connector) four new hormones in every
cycle of MaxClock, but will have no effects on other modules.
The last four rules will not affect the head module, but will
cause all the body modules (T16) to propagate hormones and
select actions. These modules will receive hormones through
the front connector and propagate hormones through the back
connector . When a hormone reaches the tail module (T2), the
propagation will stop because the tail module’s back connector
is not active. The speed of the caterpillar movement is deter-
mined by the value of MaxClock. The smaller the value is, the
more frequent new hormones will be generated, thus faster the
caterpillar moves.

Compared to the gait control table, the ADC protocol has a
number of advantages. First, it supports online reconfiguration
and is robust to a class of shape alterations. For example, when
a snake is cut into two segments, the two disconnected mod-
ules will quickly change their types from T16 to T2, and from
T16 to T1, respectively (due to the AC protocol). The new T1
module will serve as the head of the second segment, and the
new T2 module will become the tail of the first segment. Both
segments will continue move as caterpillar. Similarly, when two
or more snakes are concatenated together, all the modules that
are connected will become T16, and the new snake will have one
head and one tail, and the caterpillar move will continue with
the long snake. Other advantages of this hormone-inspired dis-
tributed control protocol include the scalability (the control will
function regardless of how many modules are in the snake con-
figuration) and the efficiency (the coordination between mod-
ules requires only one hormone to propagate from the head to
the tail). Let be the number of modules in the snake, then the
ADC protocol requires only message hops for each cater-
pillar step, while a centralized approach would require
message hops becausemessages must be sent tomodules.

In general, the ADC protocol has the following properties.

• Distributed and Fault-Tolerant:There are no permanent
“brain” modules in the system and any module can dy-
namically become a leader when the local topology is ap-
propriate. Damage to single modules will not paralyze the
entire system.

• Collaborative Behaviors:Modules do not require unique
ID’s yet can determine their behaviors based on their
topology types and other local information. The global
behaviors can be locomotion or self-reconfiguration.

• Asynchronous Coordination:No centralized global real
time clocks are needed for module coordination, and ac-
tions can be synchronized via hormone propagation.

• Scalability: The control mechanism is robust to changes
in configuration as modules can be added, deleted, or re-
arranged in the network.

TABLE IV
RULEBASEFOR A LEGGEDWALK

B. Other Locomotion Examples of the ADC Protocol

The ADC protocol can be applied to many different robot
configurations. All that is required is to provide the appropriate
set of rules to the protocol and have the correct initial configu-
ration in place. For example, Table IV lists the set of rules that
will enable a legged robot to walk. In this class of configura-
tion, the module types are similar to those shown in Figs. 3 and
4, where a six-legged robot is shown. In other words, the left
leg modules are T6, the right leg modules are T5, the head is
T21, the tail T19, and the spine modules are T29. The hormone
message used in Table IV is named as LG. We use set notation
such as as a shorthand for the set of connectors to send
the hormone. The action Straight means .
The action Swing means to lift a leg module, swing the module
forward, and then put the module down on the ground. The ac-
tion Holding means to hold a leg module on the ground while
rotating the hip to compensate the swing actions of other legs.

The first two rules indicate that the head module, which can
be type T21, T17, or T18, is to generate two new LG hormones
with alternative data (A and B) for every cycle of MaxClock.
This hormone propagates through the body modules (T29, T26,
or T28) and the tail module (T19), alternates its data field, and
reaches the leg modules, which will determine their actions
based on their types (T5 or T6).

This control mechanism is robust to changes in configura-
tions. For example, one can dynamically add or delete legs from
this robot, and the control will be intact. The speed of this gait
can be controlled by the value of MaxClock, which determines
the frequency of hormone generation from the head module.

As another example of how to use the ADC protocol to con-
trol locomotion of self-reconfigurable robots, Fig. 8 shows the
configuration of the rolling track. Notice that in this configura-
tion, all modules are of type T16, only their DOF1 values are dif-
ferent. The track moves one direction by shifting the two DOF1
values (90, 90) to the opposite direction.

Table V lists the rules for a rolling track robot. The hormone
used here is of type RL, and its data field contains two values of
DOF1, and a binary value for selecting the head module. One
hormone message continuously propagates in the loop (just as
a token traveling in a token ring) and triggers the modules to
bend or straighten in sequence.
We assume that there is one and only one module whose local
variable . This module is responsible for generating
a new hormone when there is no hormone in the loop. This is
implemented by the first rule, which will detect a time-out for
not receiving any hormone for a long time (i.e., looping through
the program for MaxClock times). The head module is not fixed
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Fig. 8. A rolling track configuration.

TABLE V
RULEBASEFOR A ROLLING TRACK

but moving in the loop. We assume that the initial bending pat-
tern of the loop is correct (i.e., as shown in Fig. 8) and the head
module is initially located at the upright corner of the loop. The
rules in Table V will shift the bending pattern and the head po-
sition in the loop and cause the loop to roll into the opposite di-
rection of hormone propagation. Since hormone propagation is
much faster than the actual execution of actions, when a module
is becoming the head, it is also responsible for making sure all
actions in the loop are completed before the next round starts.
The head module will hold the next hormone propagation until
all its local actions (DOF1 moving from 0 to 90) are completed.

Notice that the loop configuration is a cyclic network and
module types alone are no longer sufficient to determine local
actions (in fact all modules in the loop have the same type T16).
In general, additional local variables (such as Head) are neces-
sary to ensure the global collaborations between modules in a
cyclic network.

Due to the potential of communication errors, there may be
situations where no module has the local variable and
there is a need for a new head module. In such a case, it may be
possible to create a negotiation mechanism for one module to
switch its local variable to , if there are none in the
group—just like some schools of fish where a female changes
gender if the male in the group is dead. One possible imple-
mentation is to allow any module to self-promote to become a
new head if it has not received messages for a long time. In this
case, modules must negotiate among to ensure that there is one
and only one head in the system. This is sometimes called the
problem ofDistributed Task Selectionand we will describe a
solution later in Section VI.

C. Distributed Control of Cascade of Actions

Hormone-inspired distributed control can also be applied to
the control of cascade of actions, where actions are organized in
a hierarchical structure and a single action in a higher-level can

Fig. 9. Reconfiguring a 4-leg robot into a snake body.

trigger a sequence of lower-level actions. To illustrate the ideas,
let us consider the example in Fig. 9, where a CONRO robot is
reconfiguring from a quadruped to a snake. The robot first con-
nects its tail with one of the feet, and then disconnects the con-
nected leg from the body so that the leg is “assimilated” into the
tail. After this “leg-tail assimilation” action is performed four
times, the result is a snake configuration. Note that the middle
shape in Fig. 9 is an illustration. In the real CONRO robot, at
least 4 modules are needed to make a loop.

To control this reconfiguration, the high-level actions are a
sequence of leg-tail assimilations, while the lower-level actions
are those that enable the tail to find a foot, to align and dock with
the foot, and then disconnect the leg from the body. Using hor-
mones, the control of the reconfiguration can be accomplished
as follows. One module in the robot first generates a hormone
(called LTS for changing Legs To Snake). This LTS hormone
is propagated to all modules, but only the foot modules (which
are types T5 or T6) will react. Each foot module will start gen-
erating a new hormone RCT to Request to Connect to the Tail.
Since there are four legs at this point, four RCT hormones are
propagating in the system. Each RCT carries the information
about its propagation path2 . A RCT hormone will trigger the
tail module (type T2) to do two things: inhibit its receptor for ac-
cepting any other RCT hormones, and acknowledge the sender
(using the path information in the received RCT) with a TAR
(Tail Accept Request) hormone. Upon receiving the TAR hor-
mone, the selected foot module first terminates its generation
of RCT, and then generates a new hormone ALT (Assimilate
Leg into Tail) to inform all the modules in the path to perform
the lower-actions of bending, aligning, and docking the tail to
the foot. The details of these lower-level actions are described
elsewhere [26]. When these actions are terminated, the new tail
module will activate its receptor for accepting other RCT hor-
mones, and another leg assimilation process will be performed.

2A propagation path is a concatenation of all the sender connectors and re-
ceiver connectors through which the hormone has been sent so any module along
the path can trace back to the original sender.
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TABLE VI
HORMONE ACTIVITIES FOR CASCADE ACTIONS

This procedure will be repeated until all legs are assimilated, re-
gardless of how many legs are to be assimilated. In Table VI, we
list one possible sequence of hormone activities for assimilating
four legs shown in Fig. 9.

V. EXPERIMENTAL RESULTS

The hormone-inspired adaptive communication and dis-
tributed control algorithms described above have been
implemented and tested in two sets of experiments. The first
is to apply the algorithm to the real CONRO modules for
locomotion and reconfiguration. The second is to apply the
algorithm to a CONRO-like robot in a Newtonian mechanics
simulation environment called Working Model 3D [39].

All modules are loaded with the same program that im-
plements the ADC protocol illustrated in Figs. 5 and 7.
For different configurations, we have loaded the different
RULEBASE. All modules are running as autonomous systems
without any off-line computational resources. For economic
reasons, the power of the modules is supplied independently
through cables from an off-board power supplier.

For the snake configuration, we have loaded the rules in
Table III onto the modules and experimented with caterpillar
movement with different lengths ranging from 1 module to ten
modules. With no modification of programs, all these config-
urations can move and snakes with more than three modules
can move properly as caterpillar. The average speed of the
caterpillar movements is approximately 30 cm/min. To test the
ability of on-line reconfiguration, we have dynamically “cut” a
ten-module running snake into three segments with lengths of
4, 4, and 2, respectively. All these segments adapt to the new
configuration and continue to move as independent caterpillars.
We also dynamically connected two or three independent
running caterpillars with various lengths into a single and
longer caterpillar. The new and longer caterpillar would adapt
to the new configuration and continue to move in the caterpillar
gait. These experiments show that the ADC protocol is robust
to changes in the length of the snake configuration.

To test whether modules can automatically generate hor-
mones when they receive appropriate environmental stimuli
from their local external sensors, we have installed two tilt-sen-
sors on one of the modules in the snake configuration, and
loaded the following rules to the modules:

If tilt-sensors , generate hormone [FlipLeft, *, *]
If tilt-sensors , generate hormone [FlipRight, *, *]

If tilt-sensors , generate hormone [FlipOver, *, *]

We defined the actions for FlipLeft, FlipRight, and FlipOver
for all the modules so that when these hormone messages
are received, the modules will perform the correct actions
for DOF1 and DOF2 to flip the snake back to its normal
orientation. To test this new behavior, we manually pushed the
snake, while it is moving as a caterpillar, to its side or flipped
it upside down. We observed that the tilt-sensors are activated,
new hormones are generated, a sequence of actions is triggered,
and the robot flips back to its correct orientation. (See movies
at http://www.isi.edu/conro.)

For the legged configuration, we have loaded the rules in
Table IV onto the modules and experimented with the various
configurations derived from a 6-leg robot (see Fig. 3). These
configurations can walk on different number of legs without
changing the program and the rules. While a 6-leg robot is
walking, we dynamically removed one leg from the robot
and the robot can continue walk on the remaining legs. The
removed leg can be any of the 6 legs. We then dynamically
removed a pair of legs (the front, the middle, and the rear)
from the robot, and observed that the robot can continue walk
on the remaining 4 legs. We then systematically experimented
removing 2, 3, 4, 5, and 6 legs from the robot, and observed
that the robot would still walk if the remaining legs can support
the body. In other cases, the robot would still attempt to walk
on the remaining legs even if it has only one leg. Although we
have only experimented robots with up to 6 legs, we believe in
general these results can scale up to large configurations such
as centipedes that have many legs.

For the rolling track configuration, we have loaded the rules
in Table V onto the modules and experimented with rolling
tracks with lengths of 8, 10, and 12. In all these configurations,
the rolling track moved successfully with speed approximately
60 cm/min. The current configurations must have more than
6 modules and the number of modules must be even. This is
because there must be 4 modules with , and at least
two other modules with . To test the robustness of the
system against loss of messages in the communication, we sim-
ulated random message losses in the program. We observed that
when a message of is lost, the robot will stop
rolling momentarily and then the head module’s local timer will
reach MaxClock, and a new hormone will be generated and the
track will resume rolling. If the lost message is ,
then there will be no head module in the system, and the robot
will not roll again. However, since most messages are of the first
kind, the chance of failing to resume rolling is low. In practice,
when message losses do occur, we only observed nonrecovery
stops in rare occasions.

In parallel with the experiments on the real CONRO robot, we
have also implemented with the ADC protocol on a simulated
CONRO-like robot in a software Newtonian simulation environ-
ment called Working Model 3D [39]. Using this three-dimen-
sional dynamics simulation program, we have designed a set of
virtual CONRO modules to approximate the physical properties
of the real modules, including their mass, motor torques, joints,
coefficient of friction, moments of inertia, velocities, springs,
and dampers. The ADC protocol is implemented in Java and
runs on each simulated module. We have experimented with
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and demonstrated successful locomotion in various configura-
tions, including snakes with different length (3–12 modules) and
insects with different numbers (4–6) of legs. For the cascade
actions, we have successfully simulated the reconfiguration se-
quence described in Section IV.C using the ADC protocol.

VI. DISCUSSION

This section discusses some related questions about the ADC
protocol: (1) How to deal with multiple hormone generators in
a robot? (2) How to combine multiple rule sets and switch be-
tween them? (3) How to develop the appropriate RULEBASE
for a particular global behavior? (4) Is this mechanism appli-
cable to robotic systems in general?

In the above description, all the rules are so designed that one
robot has only one hormone generator at a time. For the snake
and legged robots, the generator is the head module. For the
rolling track, it is the module that has a local variable .
When there are multiple hormone generators in a robot, mod-
ules must negotiate to select one and only hormone activity.
This problem is sometimes calledDistributed Task Selection,
which is a process for modules to agree and select the same task
among multiple initiated tasks in a distributed manner. To solve
this problem, we have designed a distributed algorithm called
DISTINCT. The main idea is to allow every activated hormone
generator to compete to build a spanning tree for itself (being
the root of that tree) by propagating a tree-building message to
all its neighbors. During this tree building process, if a hormone
generator module finds itself being asked to be a part of another
tree (when it receives a tree building message from a neighbor
module), it will drop its own root status and propagate that mes-
sage to its neighbors (less the one from which the message is
received) and become a part of that tree. If any module that is
already in a tree receives another tree building message from
a nonparent neighbor module, this module will select one of
these received tasks, and designate itself as a new root and start
building a new tree by propagating a new tree-building message
to all its neighbors. This method is proved to be correct in se-
lecting one and only one hormone activity in a distributed net-
work. Interested readers can refer to [40] for details.

The second question is how to combine multiple rule sets. We
notice that as long as rules in both sets do not share the same
conditions, then the two different rule sets can be combined
into one and the switch between the two behaviors will be au-
tomatic. For example, Table III can be combined with Table IV
and the result rule set can be used for demonstrating “online be-
havior-shifting” between caterpillar movement and leg move-
ment. In particular, one can disconnect a tail/spine module from
a snake and connect it to the side of the snake, and that module
will automatically change its behavior to a leg. A similar but re-
verse process will change a leg module to a tail/spine module.
Using this technique, we can dynamically change a snake con-
figuration to a legged robot by rearranging modules in the body,3

while the robot is still running.

3Currently, this reconfiguration is not yet automatic. We manually disconnect
a module from one place and reconnect it to somewhere else in the body. The
automatic reconfiguration will be reported in future papers.

The third question is how to develop an appropriate rule set
for a particular behavior. We note that the local control rules are
similar to the receptors found in biological cells and they deter-
mine how modules react to hormones. At the current stage, the
development of these rules requires expertise in the expected
behavior and the local topological type information about the
modules in the configuration. It is still an open problem how to
develop these rules automatically. Approaches based genetic al-
gorithms and other machine learning methods can be promising,
but further research is needed to generate hormone receptors
automatically and correctly. In general, the more complex the
behavior is, the more complex the set of rules and requirements
are. To make the approach feasible for obtaining for complex be-
haviors, a general strategy can be suggested based on Simon’s
hierarchical and nearly-decomposable systems [41]. One first
decomposes a complex behavior into a hierarchy of sub-behav-
iors and design one hormone for each of the most primitive be-
haviors. Then, another set of hormones is designed to compose
the simple behaviors together. The hormones in Table VI are
designed using this strategy. As a direction for future research,
we will develop software methods tomechanizethese hormone
design procedures.

The fourth question is whether the hormone-inspired ap-
proach described here is applicable for robotics systems in
general. Although it has been the nature of self-reconfigurable
robots that forced us to develop this distributed control mech-
anism, we believe it would be easily generalized and applied
to behavior design of robots for which algorithmic, centralized
approaches are usually applied (e.g., wheeled mobile robots).
In particular, one can generalize the concept of “connectors be-
tween modules” to “communication channels between robots”,
and then the AC and the ADC protocols can be applied to con-
trolling the collaborations among distributed robotics systems
in a dynamic network. Each robot would have a number of
“channels” that can be “connected” to other robots’ channels
to form “active links” which are not necessarily physical
couplings but communication links. With this generalization,
all the advantages described in this paper could be beneficial
to the control of distributed robotics systems. One potential
concern for the scalability of the hormone-inspired protocols
is that if there are delays in the communication, the system
in general may behave erratically. It has been proven that in
multi-agent/multi-robot systems, effects of delay may create
unforeseen/emerging behavior. As a possible solution for this
problem, we propose to use hormones to adjust local timers to
compensate the delay. For example, one can image that when
a hormone message is received, the module will readjust its
local timer as a function of the hormone’s lifetime (the number
of hops it has been propagated). However, further experiments
must be conducted to verify the effectiveness of this proposal.

VII. CONCLUSION

This paper presents a hormone inspired control framework
for adaptive communication and distributed control in self-re-
configurable robots. The paper argues that self-reconfigurable
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robots demand a new methodology for communication and
cooperation, and the biological concept of hormone can provide
many inspirational ideas. The paper describes the AC protocol
for adaptive communication in a dynamic and self-reconfig-
urable network, and the ADC protocol for distributed control
of the actions performed by the nodes in such a network. These
protocols are illustrated through the CONRO self-reconfig-
urable robots. Experiments in both real CONRO modules and
in 3-D simulation have shown that this hormone-inspired ap-
proach can support many unique features of self-reconfigurable
robots, including adaptive communication in dynamic network,
decentralized and distributed control for collaboration among
autonomous modules, on-line reconfiguration, and scalability
to larger and multiple robotic systems.
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