
Multi-path OSPF Performance of a Software Router

in a Link Failure Scenario

Vincenzo Eramo 1, Marco Listanti 2, Antonio Cianfrani 3

INFOCOM Department - University of Roma ” La Sapienza”

Via Eudossiana 18, 00184 Roma, Italy
1
vincenzo.eramo@uniroma1.it
2
marco@infocom.uniroma1.it

3
cianfrani@net.infocom.uniroma1.it

Abstract—In this paper we analyze intra-domain routing
protocols improvements to support new features required by real
time services. In particular we introduce OSPF Fast Convergence
and highlights the advantage of using an incremental algorithm
instead of Djikstra one to compute the shortest paths. Then

we propose a new multi-path incremental algorithm that we
have implemented in OSPF code of Quagga open-source routing
software. Analyzing an index characterizing OSPF performance
we compare our algorithm with an incremental algorithm not
supporting multi-path and demonstrate that, even if multi-path
support, the reconfiguration times are really similar; moreover,in
some cases, our algorithm performs better, especially in a link
failure scenario.

I. INTRODUCTION

OSPF [1] and IS-IS [2] are the most used intra-AS routing

protocols in today Internet: they are link-state protocols and

they use the well-know Djikstra algorithm to construct the

router routing table. Their performance can be characterized

with the convergence time index, which represent the time

for a network to reconfigure itself when a topological event

happens. The convergence time is influenced by three different

phases performed by routing protocols: detection, flooding and

Shortest Path First (SPF) computation. The detection phase

consists in identification of a topological modification and,

if no hardware detection mechanism is provided, depends on

Hello messages exchange between routers; the propagation

phase consists in exchange of Update messages from the router

discovering the modification to all other network routers,

through flooding mechanism; the SPF computation is the phase

in which the shortest paths to all destinations are discovered

using Djikstra algorithm.

In the last years there has been a great interest in real

time services, such VoIP and distibuted gaming, which require

high network performance in terms of delay and jitter. Actual

routing protocols are inefficient in such a scenario [3] because

they were designed to support best-effort traffic. In particular

convergence time has to be hardly reduced from the actual

40-50 seconds to 100-200 ms; this purpose can be achieved

introducing some optimizations in the three phases of the

convergence process [4]: the detection time can be reduced

introducing the milliseconds Hello mechanism, the flooding

time can be reduced making the flooding messages the ones

with highest priority and the SPF computation can be reduced

using an incremental algorithm instead of the Djikstra one.

In this paper we introduce incremental algorithms for the

single-source shortest path problem and evaluate the applica-

bility of past algorithms in a networking scenario. In partic-

ular we remark the necessity of an algorithm that reacts to

link deletion, which represent the most damaging event in a

network, and insertion and that support multi-path: multi-path

support allows to calculate all possible shortest paths to all

destinations, so routers can perform load balancing for some

destinations through paths of minimum equal cost. So we de-

fine a multi-path incremental algorithm with these features and

evaluate its performance implementing it in the OSPF code of

an open-source routing software, Quagga [5]. The performance

evaluation is performed measuring the SPF computation time

index of an OSPF router [6] through white box measurements,

comparing our multi-path incremental algorithm with an uni-

path incremental algorithm.

The paper is organized into 4 sections. In section 2 incre-

mental algorithms definition, motivation and previous works

are described. Our multi-path incremental algorithms is de-

scribed with an example in section 3. In section 4 the main

numerical results of multi-path and no uni-path algorithms are

shown. Finally in section 5 conclusions and further research

items are illustrated.

II. INCREMENTAL ALGORITHMS

A. Motivations

An algorithm to evaluate the shortest paths from a router

to all AS destinations is the key element of a link-state

routing protocol. Actual intra AS routing protocols, such as

OSPF and IS-IS, make use of Djikstra algorithm: when a

topological change happens all the shortest path are calculated

from scratch, not using the old shortest paths information. This

kind of algorithm has always as start point a database, in which

each network element is described, and as a result a tree, even

if it is not a real tree as we discuss later, of paths of minimum

cost (SPT: Shortest Path Tree) which allows to construct the

router routing table.

The SPT computation, performed by Djikstra algorithm, is

the hardest operation for a router, because all CPU is used, but

also the most problematic. In fact when a topological change

978-1-4244-1845-9/08/$25.00 © 2008 IEEE IT-NEWS 2008197

occurs and SPT computation is executing, the routing table

used not reflects the real network topology. In this way data

packets can pass through sub-optimal paths or even through

paths not more available and so they can be lost, degrading

network performance; this last case can happens when there

is a link failure, which represents the most dangerous event

for a network. In the last years some studies has been done

to characterize the evolution of a network topology, analyzing

routing protocols messages and SPTs successions. In particular

the work presented in [7], where an ISP has been analyzed for

a year, demonstrates as 65% of SPT computations produces

the same SPT that was used before the topological event

and in the other cases the SPT calculated is really similar to

the last one. These results highlights that Djikstra algorithm

is inefficient in a real scenario where only few operations

have to be done to calculate new SPT instead of a full

computation. These motivations have lead to the introduction

of a new class of algorithms for the computation of the

shortest paths, the incremental ones [8]–[11]. They make use

of the previous SPT to calculate the new one, computing the

only part of SPT influenced by the topological event. In this

way incremental algorithms meet real network requirements:

computing resources are saved, best paths are available first

and so routing convergence can be highly reduced.

B. Previous works

In the past years various incremental algorithms for the

single-source shortest path problem in a directed and oriented

graph has been presented. All this works has been conceived

for a most generic problem than a networking scenario, so we

analyze for each one its relevant proprieties.

The first interesting work has been presented by Rama-

lingam and Reps [8], which propose an algorithm reacting

to edge deletion or insertion. The most interesting aspect of

this work is the introduction of output complexity model,

in which the cost of a dynamic algorithm is evaluated as a

function of the number of output updates caused by each input

modification; this model, with some variations, has been used

by all other works. The weak point of the algorithm is that for

each node of the SPT it maintains only distance and outdegree

information and not the useful information to calculate the

sequence of nodes representing the shortest paths from root to

every topology node.

In [9] Frigioni et al. propose a dynamic algorithm reacting

to edge deletion, insertion and modifications of weight, which

maintains for each node a list of children and a single parent,

which means it does not support multi-path equal cost feature;

moreover two further structures, backward-level and forward-

level lists, are maintained for each node allowing the scanning

of a less number of edges when the algorithm is performed,

with respect to [8].

In [10], [11] Narvaez et al. propose two different incremen-

tal algorithms to be used when a link increases or decreases

its weight. The first one [10] is the dynamic version of three

static algorithms, Djikstra, Bellman-Ford and D Esopo-Pape,

while the second one [11] is based on a Ball-and-String model,

using an original search criteria. As for [9], the algorithm

maintains a completed SPT structure, with parent and children

list attributes for each node, but does not support multi-path

aspect.

C. Incremental algorithms in a networking scenario

Incremental algorithms described before can not be directly

used in a routing protocol because in a networking scenario

they have to satisfy specific requirement.

First at all an incremental algorithm has to be developed to

react to the most common events in a network. As demon-

strated in [7] edge deletion and insertion are the topological

changes that characterize an ISP routing protocol, while edge

metric modifications are really rare; a more deep analysis,

presented in [12], demonstrate that 70% of unplanned events

involves single links. We can conclude that deletion and

insertion of a single edge have to be events the algorithms

react to. In this way algorithms proposed by Narvaez et al.

can not be used as they have been presented.

A really important aspect that a routing protocol algorithm

needs to have is multi-path support. This feature consists in

calculating all shortest paths from a router to each destination.

This means that the algorithm needs to calculate a sub-graph

of minimum paths and this is the reason because we said

SPT is not a real tree. Multi-path additional information is

then computed by IP protocol: when the router receives a

packet directed to a specific destination, it can choose among

different next-hop routers, in general one for each shortest

path. In this way router can perform load balancing, choosing

a specific next-hop for each packet, or flow of packets, through

some functions [13]. Multi-path support, as well as allowing

load balancing, also permits to improve TCP performance:

in particular works in [14]–[16] demonstrate that with some

TCP modifications to support path diversity, transport-layer

performance can be increased. Multi-path is a feature of static

Djikstra algorithm while is not supported by Frigioni and

Narvaez algorithms.

Another aspect to be considered is that the algorithm has

to create a routing table: in this way it has to operate with

appropriate data structures. In particular for each node of the

SPT some attributes has to be maintained: distance from root,

list of parents (because of multi-path support), list of children

and list of next-hops. This last element represents the first

routers in the paths from root to node and it is just the next-

hop routers to be inserted in the routing table: it can be easily

calculated from the list of parents attribute of each node. The

algorithm of Ramalingam, unlike others, does not maintain

such a structure for SPT.

Finally, an incremental algorithm to use in a networking

scenario has to react to single edge deletion and insertion, to

support multi-path and to create specific data structures. In the

next section we introduce our incremental algorithm with the

previous aspects and highlights as multi-path support can be

used as a strong point to reduce network re-configuration time

especially in a link failure scenario.

198

(a) (b)

(c) (d)

(e)

Fig. 1. Example of edge deletion. a) Network graph with only a subset of edges with their cost; the solid thick arrows represents all the SP(G) edges. b)
Set of affected nodes after edge deletion. c) and d) SP(G) during the initialization phase of the algorithm; because of the multi-path, shortest paths to i and t
exist and the nodes i and t can be deleted from the set D(v). e) Final SP(G) after that the operations of the algorithm have been performed.

III. OUR MULTI-PATH INCREMNTAL ALGORITHM

In this section we introduce our multi-path incremental

algorithm and show its behaviour in a link failure scenario.

Our algorithm is a dynamic version of Djikstra static algorithm

which react to single link deletion and insertion; its relevant

characteristic is how it make use of multi-path information to

199

speed up SPT computation.

The algorithm is composed by an initialization phase,

different for link deletion and insertion, and a main phase.

Initialization phase in case of link insertion and main phase

are modified versions of the same phases presented in [10]:

they have been modified to support multi-path and new data

structures our algorithm uses. The initialization phase in case

of link deletion is really innovative because allows to minimize

number of nodes affected by link deletion thanks to multi-

path information. A detailed description of our algorithm can

be found in [17], so in this section we highlight algorithm

behaviour in the case of link deletion through an example.

Before describing the example, we have to introduce some

notations regarding a network graph, in particular data struc-

tures used to maintain SPT information on each node. A node

v has different attributes: P (v) is the set of v parents, C(v)
is the set of v children , D(v) is the set of v descendents,

d(v) is v distance and NH(v) is the set of v next-hops. The

algorithm also maintains a data structure, the Candidate List

Q, that contains nodes whose attributes must be updated; an

element in Q is the triple (v, P, dnew), where v is the node to

be updated, P is the new set of parents and dnew is the new

v distance.

Figure 1(a) shows a network graph, where each link is

bidirectional and weighted: for simplicity the two edges of

the same bidirectional link have the same cost. The solid thick

arrows are all the SPT links while the thin dashed ones do not

belong to SPT.

Let us suppose that link from node p to node v fails. In

the initialization phase of the incremental algorithm it is first

checked if link deleted belongs to SPT, otherwise the algorithm

stops, and then all nodes affected by failure are checked: this

set of nodes is represented in Figure 1(b) with the dashed

curve and contains all v descendents D(v), nodes belonging

to sub-tree having v as root.

The algorithm has to evaluate v set of parents to find

possible multi-paths: in fact if v has other parents and so other

paths of minimum cost, the algorithm only has to remove the

deleted path for v and recomputed next-hop attribute for all

its descendents. In this case the only parent of v is p so v is

unreachable. The search of external multi-path is performed

for all v descendents, scanned in an ordered way. For node l

there are not external multi-paths while for node i there is an

external multi-path, with e as parent: i is deleted from D(v),
its set of parents now contains the only node e and its distance

remains 40. The SPT at this time is represented in Figure 1(c).

Scanning v descendents, the algorithm find an external equal

cost path for node t too. It has two parent: l, a v descendent,

and i, just removed from set of v descendents. So t is in turn

removed from D(v), its distance is not changed and its set

of parents contains the only node i. The last v descendents

is s and for it there are not external multi-path so it is set

to an unreachable state. The unreachable nodes maintain their

parent-child relationships (C(v) = l, P (l) = v, C(l) = s,

P (s) = l). After initialization phase the algorithm produces

the SPT represented in Figure 1(d).

The last thing to do in the initialization phase is to find

new shortest paths for node affected, through nodes external

to D(v). In particular all external incoming edges have to be

evaluated. In this case for node v the best path has a as parent

and a cost equal to 35, so the element (v, a, 35) is enqueued in

Q, for node l it has t as parent and a cost equal to 70, (l, t, 70)
is enqueued in Q, and for node s it has q as parent and a cost

equal to 65, (s, q, 65) is enqueued in Q. Notice as during the

initialization phase the set of affected nodes has to be reduced

from five to three elements, using multi-path information.

In the main phase of the algorithm, the first element ex-

tracted from Q is v: its new possible distance (35) is obviously

better than the present one (infinite) so all its attributes,

except set of children, are changed (d(v) = 35, P (v) = a,

NH(v) = {p}); node v will certainly not be modified during

the last part of the algorithm, as explained in the correctness

analysis. All v descendents have to be updated, so d(l) = 45
, NH(l) = p, d(s) = 65 and NH(s) = p. The second

element extracted is s: its new possible distance is equal to

its distance, updated in the first step, so the algorithm simply

stores this new equal cost path adding q to P (s) and z to

NH(s). Considering equal cost multi-path the router r can

reach node s through two different next-hop routers and so it

can balance traffic. The last element extracted from Q is l but

its new possible distance is bigger than the present one, so

nothing has to be done. The candidate heap is empty so the

algorithm stops. Final SPT is represented in Figure 1(e).

IV. PERFORMANCE EVALUATION

A. Test methodologies

As discussed in [17], complexity analysis cannot be a full

characterization of our incremental algorithm; so we have de-

cided to evaluate our algorithm behavior in a real environment,

implementing it in a routing protocol, OSPF, and measuring

protocol performance indexes in different topology scenario.

To implement incremental algorithm we have used a routing

software with an open code (Open-source routing software),

Quagga [5]. Quagga is designed for Unix operating systems

(Linux, BSD and Solaris) and it provides TCP/IP based routing

protocols, including OSPF, RIP and BGP. The most interesting

aspect of an open-source routing software is its flexibility

that allows evaluation of new routing feature, such as our

algorithm. We have implemented our multi-path algorithm in

OSPF code of Quagga software so that every time the deletion

or insertion of a single link happens, incremental algorithm,

instead of Djikstra one, is performed.

To characterize algorithm performance we have realized

white box measures, introducing specific timestamps in the

OSPF code; in particular these timestamps allows to calculate

exactly the SPT computation time, the time for the router to

compute all shortest paths. To evaluate this index we have

used the test configuration reported in Figure 2: DUT (Device

Under Test) is the PC based router equipped with Quagga and

our multi-path algorithm.

The network topology is made up of two real routers (a

testing PC and the DUT) and a variable number of fictitious

200

Fig. 2. Test-bed for the evaluation of the SPF computation time in a Device
Under Test (DUT).

routers and networks, so that the DUT will have to find the

shortest paths to all the vertexes of the emulated network, a

vertex being either a network or a router. The testing PC is

running a C++ software allowing the generation of network

topology and the generation, and sending to the DUT, of Link

State Advertisements (LSA) describing the network topology.

B. Numerical results

Our multi-path incremental algorithm has been compared

to the uni-path algorithm proposed by Narvaez [10]; to do

that we have implemented uni-path algorithm, with some

modifications regarding mainly deletion support and data

structures used, in OSPF Quagga code. We have used a PC

with 2,6 GHz processor and 512 MB RAM. The comparison

has been carried out by emulating on the DUT real network

topologies measured within the Rocketfuel project [18]. In

particular we have considered the topology of Verio, an USA

Internet Service Provider whose network is composed by 893

routers and 4154 links. All of the link costs have been set to

10. We have decided to characterize algorithms performance

in a link failure scenario because it can cause data lost

and so network performance degradation. Moreover the SPF

computation time in an incremental algorithm depends on link

position and on type of change occurring, so we have chosen

to measure this time when the deletion of each single link

of the Verios network occurs; after each deletion we have re-

inserted the link just deleted and then we have performed the

successive link deletion measure. The SPF computation time

is reported in Figure 3 and 4 in the case of multi-path and

uni-path incremental algorithm respectively, as a function of

the link interested; we have decided to order links in x-axis

in decreasing order of SPT time in multi-path algorithm. In

both the figures we also report the time that the DUT takes

to run the static Dijkstras algorithm, which is different in the

two cases of uni-path and multi-path: in the first case Djikstra

compute a single path of minimum cost for each destination,

in the second case all shortest paths to each destination and

so we have two different values in the two cases. Obviously

Djiksra uni-path and multi-path times are independent of the

link position in which failure occurs.

Observing Figure 3 and 4 you can notice that SPT computa-

tion time is always less than static algorithm one. Furthermore

the average SPF computation time is 0,35 ms and 0,349 ms

in multi-path and uni-path algorithm respectively, while the

static SPF computation time is 8,116 ms and 7,407 ms in

0 500 1000 1500 2000 2500 3000 3500 4000
0

1

2

3

4

5

6

7

8

9

Link−id

T
s
p

f
(m

s
)

Incremental uni−path

Djikstra uni−path

Fig. 3. Performance evaluation of the uni-path incremental algorithm in the
case of link failure.

0 500 1000 1500 2000 2500 3000 3500 4000
0

1

2

3

4

5

6

7

8

9

Link−id

T
s
p

f
(m

s
)

Incremental multi−path

Djikstra multi−path

Fig. 4. Performance evaluation of the multi-path incremental algorithm in
the case of link failure.

multi-path and uni-path cases; this means that the incremental

algorithms allow a saving of about 95% in processing time

with respect the case in which the shortest paths would be

evaluated by using the Dijkstras algorithm. A really interesting

consideration is that SPT computation time trend is really

similar for the two algorithms despite multi-path algorithm

allows to compute a more complex structure and so more

information. In fact in the case of a uni-path algorithm SPT,

uni-SPT, is a tree and so it has exactly (N − 1) links, where

N is number of nodes; in the case of a multi-path algorithm

SPT, multi-SPT, is a graph, because all paths of minimum cost

have to be considered, and so it can have more than N links.

In Verio topology uni-SPT has 892 links while multi-SPT has

1429 links, so in this last case 500 links more belongs to

SPT causing a higher number of operations to be performed;

uni-SPT and multi-SPT are referred to the situation before

each link deletion, because after that SPTs can change their

structure.

Let us consider a subset of links to better understand the

results: we only consider the first 50 links because they cause

the highest SPT times in both algorithms. Results of this subset

201

TABLE I
MOST RELEVANT LINKS STATISTICS

Uni-path Multi-path

Link-id Affiliation to SPT Descendents SPT time (ms) Affiliation to SPT Descendents Multi-path descendents SPT time (ms)

1 Y es 448 6, 643 Y es 571 441 3, 435
3 Y es 261 3, 648 Y es 409 357 1, 826
5 Y es 331 4, 584 Y es 466 435 1, 622
7 Y es 325 4, 199 Y es 369 328 1, 576
16 Y es 91 1, 446 Y es multi − path 91 / 0, 774
21 Y es 83 1, 204 Y es multi − path 83 / 0, 719
2 Y es 55 1, 397 Y es 187 146 2, 072
4 Y es 28 0, 684 Y es 202 188 1, 628
6 Y es 35 1, 004 Y es 103 32 1, 581
8 Y es 26 0, 749 Y es 198 189 1, 431
9 No / 0, 366 Y es multi − path 219 / 1, 238
10 No / 0, 365 Y es multi − path 207 / 1, 185

of links are presented in Figure 5. Moreover we have report

in Table I the most significant links with some informations.

In the case of uni-path algorithm we report for each link,

identified by its id, information about its affiliation to uni-

SPT, that can be Yes or No, and number of descendents in

uni-SPT; in the case of multi-path algorithm we report for

each link information about its affiliation to multi-SPT, that

can be Yes, No or Yes multi-path if link end-node has other

paths of minimum cost, number of descendents in multi-SPT

and number of descendents with other paths of minimum cost.

0 10 20 30 40 50
0

1

2

3

4

5

6

7

Link−id

T
s
p

f
(m

s
)

uni−path

multi−path

Fig. 5. Performance comparision of the uni-path and multi-path incremental
algorithm in the case of link failure.

Analyzing results we can immediately see that multi-path

algorithm results for the first six points of Table I are really

better than uni-path algorithm ones. These points reflect a

common situation: in both multi-SPT and uni-SPT the deleted

link has many descendents but multi-path algorithm allows a

quicker SPT computation, two or three time faster than uni-

path algorithm, because it exploits multi-path information. For

example the first point regards a link with 448 descendents in

uni-SPT and 571 descendents in multi-SPT, but in this last case

441 descendents have at least another path of minimum cost

so the multi-path algorithm makes use of these information to

stabilize these descendents in the initialization phase without

inserting them into Candidate List structure. This result is the

most important for our multi-path algorithm; in fact in a link

failure scenario, which is the most dangerous for a network

because it can causes packet loss, when a lot of nodes are

involved, our algorithm allows a quick reconfiguration with

respect to an uni-path algorithm.

Another situation in which our algorithm performs better

is when the end node of deleted link has itself other paths

of minimum cost: this happens for links 16 and 21 in which

the number of descendents is 91 and 83 respectively and it is

the same in uni-SPT and multi-SPT, but multi-path algorithm

has better reconfiguration times, an half of uni-path algorithm

ones.

Obviously there are also situations in which uni-path al-

gorithm performs better. Links 2, 4, 6, and 8 have a lot of

descendents in multi-SPT and a few in uni-SPT so nodes and

links involved in SPT computation during uni-path algorithm

are much less and reconfiguration times are better; for example

link 4 has 28 descendents in uni-SPT while it has 202

descendents in multi-SPT. A most propitious situation for uni-

path algorithm is the ones of links 9 and 10: in this cases the

deleted link does not belong to uni-SPT while it belongs to

multi-SPT and it has also a lot of descendents. For example

link 9 does not belong to uni-SPT but it has 219 descendents

in multi-SPT; the difference in terms of SPF computation time

is limited because the end node of the deleted link has other

paths of minimum cost and so multi-path algorithm performs

a limited number of operations.

V. CONCLUSIONS

The aim of our work was to introduce the advantage of

using an incremntal algorithm in a networking scenario and

to propose a new incremental shortest path algorithm with

multi-path support. We have implemanted our algorithm in

Quagga open-source routing software and realized a test-bed

to calculate SPF computation time. Algorithm performance has

been compared with ones of a uni-path incremntal algorithm.

We have demonstrated that an incremntal algorithm allows to

higly reduce SPT computation time with respect to a static

algorithm and that our multi-path algorithm has the same

performance of a uni-path algorithm. Moreover we have seen

that multi-path algorithm performs better than uni-path one

202

when link deletion affects an high number of topology nodes,

because it can make use of multi-path information to speed up

SPT computation. In future topics, different network scenarios

will be evaluated and the proposed algorithm will be modified

to support multiple changes.

REFERENCES

[1] J. Moy. OSPF Version 2 , Request for Comments 2328, April 1998.
[2] R. Callon. ”Use of OSI IS-IS for routing in TCP/IP and dual environ-

ments”, RFC 1195, December 1990.
[3] C. Boutremans, G. Iannaccone and C. Diot. Impact of link failures on

VoIP performance, in Proceedings of ACM NOSSDAV, May 2002.
[4] C. Alaettinoglu, V. Jacobson, H. Yu, Towards Milli-Second IGP Con-

vergence, draft-alaettinoglu-ISIS-convergence-00, November 2000.
[5] Quagga Project [Online]. Available http://www.quagga.net/.
[6] V. Eramo, M. Listanti, A. Cianfrani, OSPF Performance and Opti-

mization of Open Source Routing Software, International Journal of
Computer Science and Applications, Vol. IV Issue 1, 2007 .

[7] D. Watson, F. Jahanian, C. Labovitz. Experiences With Monitoring
OSPF on a Regional Service Provider Network, In Proceedings of the
23rd International Conference on Distributed Computing Systems, page
204, IEEE Computer Society, 2003.

[8] G. Ramalingam and T. Reps. On the computational complexity of
dynamic graph problems, Theoretical Computer Science, vol. 158, pp.
233277, 1996.

[9] D. Frigioni, A. Marchetti-Spaccamela, and U. Nanni. Fully dynamic
algorithms for maintaining shortest paths trees, Journal of Algorithms,
vol. 34, pp 251-281, February 2000.

[10] P. Narvaez, K.-Y. Siu, and H.-Y. Tzeng. New dynamic algorithms for
shortest path tree computation, IEEE Transaction on Networking, vol.
8, pp. 734-746, 2000.

[11] P. Narvaez, K.-Y. Siu, and H.-Y. Tzeng. New dynamic SPT algorithm
based on a Ball-and-String model, IEEE Transaction on Networking,
vol. 9, pp. 706-718, 2001.

[12] A. Markopoulou, G. Iannaccone, S. Bhattacharyya, C.N. Chuah, and
C. Diot. Characterization of failures in an IP backbone, in IEEE
Infocom2004.

[13] D. Thaler, C. Hopps. Multipath Issues in Unicast and Multicast Next-
Hop Selection, RFC 2991, November 2000.

[14] H.Han, S. Shakkottai, C.V. Hollot, R. Srikant, D. Towsley. Multi-Path
TCP: A Joint Congestion Control and Routing Scheme to Exploit Path
Diversity in the Internet, IEEE/ACM Transactions on Networking , vol.
14, Issue 6, pp. 1260-1271, December 2006.

[15] Y. Lee, I. Park, and Y. Choi, Improving TCP performance in multipath
packet forwarding networks, Journal of Communications and Networks,
vol. 4, no. 2, pp. 148-157, June 2002.

[16] P. Key, L. Massoulie, D. Towsley. Combining Multipath Routing and
Congestion Control for Robustness, 40th Annual Conference on Infor-
mation Sciences and Systems, pp. 345-350, 2006.

[17] V. Eramo, M. Listanti, A. Cianfrani. Implementation and performance
evaluation of a multi-path incremental shortest path algorithm in Quagga
Routing Software, accepted at DRCN 2007, La Rochelle, October 2007.

[18] Rocketfuel Project [Online]. Available
http://www.cs.washington.edu/research/networking/rocketfuel/.

203

