
Tiny Nets
Adaptable Networking for Distributed Embedded Computing

Jake Read, Dougie Kogut, Nick Selby, Patrick Wahl

October 2017

1 Introduction

1.1 What/ What For

What about short timescale distributed computing?
Most networks are optimized for total throughput
- the average number of bits that can be trans-
mitted in a second. Throughput is desirable in
streaming applications, browsing, and nearly any
human-timescale based interaction, but ping time
(or latency) is often good-enough (say, tenths of a
second being noticeable).

Where multiple nodes need to coordinate in near
real-time, e.g. in robotics and automation or in aug-
mented reality and physical interface applications,
packet size and throughput is not so critical, but
latency is. Robots are not streaming video to each
other, but nodes need to collectively close control
loops in sub-millisecond timescales. Data rates can
be smaller, but ping times must be minimized.

1.2 Why Now?

Embedded computing has changed the way we de-
velop hardware. Today, a 32-bit 120MHz CPU with
hardware floating point operations and a WiFi radio
can be had for $5. A chip like this is a few grams x
a few millimeters and runs on milliamps of current.
However, coordinating and organizing computation
between more than one of these processors is non-
trivial. In order to truly leverage this dropping cost
curve, we need inter-processor communication that is
fast, reliable, and decentralized. We need better tiny
networks in order to enable massively parallel embed-
ded computing.

1.3 The State of the Art

The state-of-the-art for inter-processor communi-
cations can be surveyed with a few established
technologies:

UART, SPI, I2C, EtherCAT and CANBus

All of these technologies assert a static system
architecture: UART has Baud Rates, SPI has clock
speeds and highly regulated master/slave hierarchies,
EtherCAT is essentially a faster, proprietary SPI,
CANBus is slow and cumbersome, etc. In any of
these architectures it is non-trivial to add processors
(extra data lines are needed, each node must be
configured to match the system), processors must
operate at similar speeds and follow the same proto-
cols, and often have the same exact hardware. This
means that developing complex embedded systems is
cumbersome, and relegated to experts. Robots are
not democratized! Automation is in the hands of the
very well trained.

1.4 The Internet’s Insights

The Internet became successful when performance
standards were abandoned and interoperability was
expanded. It’s an interconnect of different networks,
not a singular holistic system. This is what allowed it
to grow and change and become the sprawling, won-
derful mess it is today. The same systems ethos does
not exist in embedded computing, where systems have
to be hand-engineered one at a time, to work in very
particular regimes, for very particular tasks.

2 Proposal

The notion here is to explore all layers of network ar-
chitecture - the PHY, MAC, Network and Transport
- where assumptions about throughput are set aside
in favour of minimizing latency, and maximizing in-
teroperability for physical systems - while minimiz-
ing size and overhead complexity. I.E. how fast can
a motor controller request and get information from
an encoder, or the position of a human interface de-
vice, etc. How quickly can systems which operate in
’real-time’ be modified, extended, adapted, etc.

2.1 Hardware

The nature of the project is such that it allows ex-
plorations with relatively low-cost, easy to boot and
acquire hardware. Namely Atmel AVR chips, ARM
chips, or some variant (typ. < $10/IC). Developing
circuits and writing code for these hardwares is low-
tech, and easy to get into - but the insights and ex-
plorations are potentially of relatively high value.

2.2 Key Ideas and Questions

1. Interoperability

• No clock, no bitrate: per-bit (or per byte?)
handshaking is used to regulate speed.

• 8MHz Processor can communicate with
2GHz Processor without configuring clock
speeds.

• Packet length is fluid.

2. Packet Automata / Node Automata

• To consider networking under an assump-
tion that global states or routing tables do
not or cannot exist.

• A packet must carry its own route, nodes
only know who their neighbours are.

• How does this reconcile with an idea of
global addressing?

• How does this reconcile with an idea of
global state-machine systems architecture?
w/r/t robotics state-of-the-art?

• Use port-flooding to discover routes.

3. Local and Global States

• Fluidity across timescales.

• Fluidity across computing scales.

• Small-timescale and large-timescale state
machines sharing a network. I.E. a motor-
encoder-loadcell ’branch’ of the network op-
erates a 100kHz control loop. It receives in-
puts from and delivers outputs to a 10kHz
path-planning control loop. This 10kHz
path-planning loop receives inputs from and
delivers outputs to a 1kHz environment
sensing system. All three loops participate
in human / computer interaction (wherein
a human’s response time to touch is 0.15
seconds) at 6Hz.

4. Writing Programs on the Network

• Many use-cases for the proposed networks
are in Robotics and Control. In some
sense the proposed network enables mas-
sively parallel computing in these fields.

• Is the network engineered such that it inter-
faces (to a systems designer) as if it were a
distributed computing architecture? Local
/ Remote Memory addresses, function calls,
etc ?

• Can we speculate on how these systems
might be developed, debugged, and de-
signed?

5. Path Planning

• Classical Path Planning Algorithms (e.g.
DFS, BFS, Greedy, Dijkstra) are powerful
tools, but are often optimized for graphs
where all topography information is readily
accessible.

• Heuristic Methods (e.g. RRT, RRT-
Connect, Hierarchical Approximate Cell
Decomposition) have similar problems, but
can offer insights into dealing with uncer-
tainty.

• Distributed Path Planning Considerations.
The additional cost of node discovery and
practical limits on memory make previous
”optimized” methods impractical and re-
quire a new framework to think about ef-
ficiency in information paths.

2.3 Implementation

• Use low-cost, ubiquitous hardware and extremely
simple wiring in order to rapidly prototype from
the bit-transfer level up.

• Of interest as a carry-along question is whether,
or to what extent, we can use Programmable
Systems-On-A-Chip or FPGA’s to extend the
speed of our PHY layer. I.E. if we are handshak-
ing on every bit in order to auto-regulate speed,
can we develop a simple gate-based logic circuit
for handshaking, interfaced with a bit-shift reg-
ister to push data out?

3 Goals

3.1 Radical Interoperability

Demonstrate large processors communicating success-
fully with small processors (i.e. a Raspberry Pi can

perform packet transfers with an 8MHz processor,
without configuring bitrates)

3.2 Route Discovery Algorithms

Develop and benchmark methods for the discovery of
global routes through a distributed network. Ana-
lyze the performance of classical path planning algo-
rithms and modern heuristic methods. For example,
in classical graph theory approaches, a k+1 Greedy
algorithm will usually outperform a k Greedy algo-
rithm. However, this assumes that determining the
cost of each of the paths in the extra step is negligi-
ble. In a distributed system, because communication
is required to determine information about a possi-
ble path, there will be a k-threshold after which it
becomes impractical to investigate the cost of contin-
uing an extra step. This dynamic will significantly
affect the information path planning paradigm.

3.3 Route Optimization Algorithms

Develop and benchmark methods for optimizing route
discovery our route selection based on (1) minimum
latency or (2) maximum throughput or (3) minimum
network-computing-cost (i.e. leaving as much of the
network as possible free to do other, more important
work).

3.4 Ping Testing

We hope to produce some tests which demonstrate
the network’s ability to reliably transmit data at low
latency, with increasing (1) # of nodes in the transmit
route, (2) # of nodes simultaneously transmitting,
(3) # of nodes transmitting at routes whose traffic
intersects test-traffic.

3.5 Bulletproofness

Develop methods for continued network operation in
the event of lost nodes.

3.6 The Demonstrator

A demonstrator 10x10 array of network nodes with
’arrows’ wherein network computing and location-
based addressing is used to point at nodes which are
’interacted with’. I.E. the user pushes a button on
one node, all other nodes point to this node. This
demonstration uses or implements much of the afore-
mentioned work: location-based addressing, path dis-
covery, flood routes, and interaction with physical
systems.

4 Milestones / Schedule Outline

1. October 12th
Hardware v0.1

• Bring hardware and IDEs online.

2. October 23rd
Project Report 1

• Hardware v0.2, Bit-level handshaking / pro-
tocol

• Measuring Bitrates, Handshakes between
different hardwares

3. November 7th
Project Meetings

• Demonstrate a small graph network with
some version of addressing, packet protocol,
and routing.

4. November 21st
Project Report 2

• More Nodes, Bigger Graphs

• Graph Discovery

• Route Optimizations

• Question assumptions about classical path
planning w/r/t ’truly distributed’ systems

5. November 30th
Work on hardware for demos.

6. December 7th
Demo development and project documentation.

7. December 12th
Project Presentations

5 Reading / Resources

• Ring Test (https://pub.pages.cba.mit.edu/ring/)

– where Ring MHz is proportional to MB/s
upper limit per processor

• Conway’s Game of Life

– Classic touch-point to consider computing
as small rule-sets and minimum local states
’emerging’ with higher order complexities.

• Internet Routing Architecture (?)

– What is the internet’s routing strategy, and
where do we stand to challenge the assump-
tions made during it’s design? Do Routing
Tables need to exist?

• Internet Zero (http://cba.mit.edu/docs/papers/06.09.i0.pdf)

