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Abstract and modularity, and which is scalable to enterprise 
level applications. 

Many Ore by nature dis- There have been a number of prior efforts to de 
tributed, not Only Over different processes but velop an architecture suitable for (mobile) robotic 
Over processors. Managing such a sYs- Unfortunately, has yet demon- 

with respect to the startGP Of Processes? in- strated the potential to build large-scale, dis- 
temal communications and state changes quicklY tributed systems for and development for 

task' This paper presents mobile robotics. For commercial applications a 

formal Of as described by [l1. tion Ware have been developed but they all 

but has a wide range Of potentia1 aPpli- of different platforms as often needed in R&D 

a very 
a distn'buted control architecture which supports a few systems such as ControlShell and Automa- 

The architecture is  primarily intended for robot proprietary and not available for a wide range 

cations. has developed and extended 
tation of the architecture by discussing the de- the Task control Architecture (TcA) [21 Over a 

ing Teal-time tasks like manipulation. This leads process control model with a single supervisory 

to functionality such as a process algebra control- module. For commun~cat~on TCA uSeS either of 
ling the life-cycle of the processes? grouping and the IpC 
distribution of processes and internal communaca- communications server. From a process point of 
tion transparent to location. Our implementation view the centralised communications poses chal- 
does not in itself introduce any bottlenecks due to lenge for highly distributed system. Also, the 
a tree structure with local control over processes Distributed Architecture for Mobile Navigation 
which gives an eficient and scalable architecture. (DAMN) L31, that in part is constructed on top 
At the end, an ezample scenario an centralised server. 

bile robot with a manipulator arm is demonstrated tralised schedu~ng/arbitration mechanism which 
an the presented framework. is a strong constraint in a general system. The 

Saphira architecture used by ActivMedia robots 1 Introduction 
was developed by Konolige [4]. Saphira has as 

Robotics involves the development of complex, its core a common representation named Local 
large control systems that must operate with a sig- Perceptual Space (LPS) that is a type of shared 
nificant and highly varying bandwidth. Usually, memory or blackboard for interprocess communi- 
software development takes place in groups and so cation/coordination. LPS provides a convenient 
it is important to note that robotic control systems mechanism for communication but at the same 
will generally be modular in nature, consisting of time it introduces a particular model of computa- 
components from a number of programmers. This tion and control that restricts highly distributed 
paper presents the design and implementation of systems due to bandwidth limitations. The Intel- 
an architecture (named DCA) for control of dis- ligent Service Robot (ISR) architecture previously 
tributed systems, which supports communications developed at the Center for Autonomous Systems, 

We motivate the design and implemen- 

sired properties Of a robot system capable Of do- number of years. TCA is used on a centralised 

TCX based on a 

a fairly of TCA components, utilizes 
advanced problem like Opening a door a mo- In addition c-,ordination is carried out by a ten- 
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Sweden [5]  was designed specifically for robotic 
applications, built on the Adaptive Communica- 
tions Environment (ACE) [6] package. This ar- 
chitecture included a centralised supervisor and 
its limitations clearly demonstrated the need for 
distributed mechanisms for coordination. 

It is also interesting to compare to other com- 
mon distributed systems in existence today. For 
example, the Internet Chat Relay Protocol (IRC) 
[7] is a distributed “instant” messaging applica- 
tion used to transmit messages rapidly all over 
the world. However, the current implementation 
of IRC is not scalable, it has a requirement that 
all servers know about all other servers [7]. Work 
is underway to address this problem but this ex- 
ample illustrates the difficulties of creating a truly 
decentralised system, even when the requirement 
is obvious. 

For process communication a number of new ef- 
forts have been developed. A protocol worth con- 
sideration is CORBA [8], which provides portable, 
open-standard communications. However, today 
there are only limited packages available that sup- 
port truly real-time coordination. RT-CORBA, 
which is a real-time extension to CORBA may be 
a good alternative in the future. Another mech- 
anism that is widely used is COM, which unfor- 
tunately primarily is used on the Microsoft Plat- 
form. Use of COM thus has limited use in a multi- 
platform environment. Another communications 
package, the Adaptive Communications Environ- 
ment (ACE) [6] also provides for portable com- 
munications. The package uses many advanced 
templates which requires use of the latest C++ 
compilers and limits its availability for use on hard 
real-time platforms. 

The lack of satisfactory packages for the de- 
velopment of robotic software systems has lead 
us to develop a new system that addresses the 
limitations of current packages. The new sys- 
tem is called DCA. Section 2 presents the re- 
quirements for a distributed control architecture 
and also describes the design of the language that 
has been implemented for our DCA. In Section 3 
we describe the Modular Software Development 
Environment (MSDE) which has been developed 
to provide portable communications and process 
management for real-time systems. Next, Sec- 
tion 4 describes the implementation of DCA and 
Section 5 presents an example of a real-time sys- 
tem described in the framework of DCA. 

2 Design Overview 

The DCA system was designed with a mobile 
robot performing manipulation in mind. In such 
an application many critical issues arise and it is 
therefore appropriate to discuss the requirements 
for a distributed control architecture first. 

Modularity: An important consideration 
when designing any large, complex system is 
to break it into pieces for development and 
testing. This enables incremental progress of 
the development and large groups to work to- 
gether on the same system. Experiences from 
earlier work show that it is often a consid- 
erable amount of work to reuse code in a 
new system. In a truly modular system where 
there is no need to modify basic functionality, 
a library of control modules can be built. 

Solution: The motivation for the develop- 
ment of DCA was to provide support for mod- 
ular systems and to allow teams of program- 
mers to cooperate on large systems. The lan- 
guage is modular in nature and much effort 
has been spent to ensure that the implemen- 
tation of new modules is as simple as possible. 

Scalability: A robotic system that will be 
solving anything more advanced than toy 
problems require a structure that does not 
suffer from scalability problems. In fact, this 
is one of the more important requirements of 
any robot control system. Our system re- 
quires about 10-50 different processes to do 
mapping, navigation, object recognition and 
object manipulation. The communication 
and control of these easily become a bottle- 
neck limiting the expansion of the robotic sys- 
tem. The scalability requirement has many 
far-reaching consequences and must be kept 
in mind at all stages of the design and im- 
plementation. Many existing architectures do 
not scale well because of a central bottleneck, 
such as a centralised supervisor or a black- 
board concept where a shared memory seg- 
ment is used by all processes. 

Solution: DCA has been designed with scal- 
ability in mind. The DCA language (de- 
scribed below) permits hierarchical construc- 
tions and, using a hierarchical design, users 
can implement systems with no centralised 
portions which could be bottlenecks. 
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0 Efficiency: While computers are increasing 
in speed very rapidly, it is still important to 

.ensure that a control architecture is efficient 
so that high frequency control tasks can be 
undertaken. However, if there is a conflict 
with the next point, i.e. flexibility and gen- 
erality, it is in many cases better to sacrifice 
efficiency over flexibility. 

Solution: The approach here was to have 
distributed event based decisions so that e.g. 
a real-time task can be separated from non 
real-time tasks if necessary. In addition, a 
low overhead protocol is used in the commu- 
nication. 

0 Flexibility and Generality: The architec- 
ture for a distributed control system should 
be as flexible and general as possible without 
imposing any fixed structure. In research, it 
is desirable to try out new ideas in a simple 
manner rather than having optimal efficiency. 

Solution: The communication options in 
DCA allows the user to choose peer-to- 
peer, many-to-one, or one-to-many commu- 
nications. Also, pushing or pulling of data 
can be decided by the user. Processes can 
be executed on different hosts and are easily 
shifted around if necessary. 

0 Theoretical foundation: The control of the 
system should be made using a theoretically 
sound foundation that allows synthesis and 
verification. Robotic systems become increas- 
ingly complex and it is therefore necessary to 
be able to do verification of a system that has 
been designed. This is especially an issue if 
the control system is going to work in a pub- 
lic setting where a failure in the control may 
cause fatal accidents. 

Solution: This was addressed by using a pro- 
cess algebra adopted from a formal model of 
computation which is described in detail in 
[l]. This algebra provides the potential of di- 
rect task-level specification in a manner which 
is human friendly as well as suitable for au- 
tomatic planners. 

2.1 Language design 

The language that describes the control system 
was designed to allow abstraction of functionality, 
i.e. if a group of processes solves a well defined 

task, that group can be given a name and has a 
set of inputs and outputs. In fact, that group is in 
itself treated as a single process from an external 
viewer. In the following text it is assumed that a 
“process” can be either a single process or a group 
of processes. 

Defining a process group requires the following 
entries: 

Process type and arguments: The pro- 
cess group is given a name reflecting the func- 
tionality and a variable number of symbolic 
arguments. These arguments are set by any 
other process group that instantiates this pro- 
cess. 

Host: The host on which the supervisor of 
this process will run is specified. The super- 
visor is a process controlling the internal exe- 
cution of this process and it will be explained 
in detail in Section 4. 

List of instantiated processes: A process 
group must instantiate the processes it will 
use. If they have arguments, they have to be 
set here, either symbolically or as constants. 
There can be several instances of the same 
process type. A common use of the arguments 
is to pass the hostname on which it should 
run. 

External I/O: If the process group wants to 
export certain inputs or outputs they should 
be declared here. An external 1/0 is actu- 
ally an internal 1/0 exported under another 
name. 

List of internal connections: Every in- 
stance of a process is, if connected, associated 
with one or more sets of internal connections. 
Every set of connections is given a label which 
can be referred to in the next entry. The pos- 
sibility to assign several sets of connections to 
the same instantiated process makes it possi- 
ble to change connections during the execu- 
tion of the process algebra. The convention 
used is to connect outputs to inputs. 

Internal event actions: This is the section 
where the process algebra mentioned earlier 
is used. By using a set of operators, the exe- 
cution of the instantiated processes in this 
group is controlled. The operators and an 
example are described in Section 2.1.1. 
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A typical example of a process is shown below. 
It acts as a compliant motion controller for a puma 
arm. When the process “hit” detects high forces 
it preempts the whole group with the use of the 
preemption operator “#”. 

process CompliantMotion(host1, hosta){ 
host<hostl) 
instantiated-processes{ 

forcedata instof ForceSensor(host1); 
compliant instof CompliantCtrl(host1); 
puma instof Puma560(host2); 
hit instof HitDetector(host1) ; 

3 
external-io{ 

> 
// This process has no external I / O  

internal-connect ions (f orcedata, lbll)< 
forcedata, Outl -> compliant, Inl; 
forcedata, Outl -> hit., Inl; 

3 
internal-connect ions (compliant, lbll) < 
3 
internal_event-actions{ 

compliant, Outl -> puma, Inl; 

// Perform compliant motion until the process 
// ’hit’ detects abnormal forces and preempts 
// the running group of processes 

hit # (f orcedataClbll] , compliant [lblll , puma) 
1 

1 

2.1.1 The process algebra 

Processes can generate different kinds of events 
at run-time that need to be taken care of. The 
events are e.g. DONE, ABORTED or error events 
like SIGSEGV or similar. The paradigm used is a 
completely event driven life-cycle of the instanti- 
ated processes. A suitable model for this has been 
developed in [l] where a number of operators are 
defined. These operators are: 

Concurrent Composition: T = (P, Q).  The 
process T behaves like P and Q running in 
parallel. 

Sequential Composition: T = P; Q.  The pro- 
cess T behaves like P until that terminates 
and then behaves like process Q. 

Conditional Composition: T = P” : Qv. The 
process T behaves like process P until that 
terminates. If P aborts, then T aborts. If P 
terminates normally, then the value ZI calcu- 
lated by P is used to initialize the process Q, 
and then T behaves like Q. 

Disabling Composition: T = P#Q. The pro- 
cess T behaves like the concurrent composi- 

tion of P and Q until either terminates, then 
the other is aborted and T terminates. 

0 Synchronous Recurrent Composition: T = 
P” :; Q,,. This operator is recursively defined 
as P” : ; Q v  = P” : Qv; P” : ;Qv .  If P ter- 
minates normally, its calculated value ZI will 
initialize Q (as in the conditional ’:’ opera- 
tor). Then when Q terminates, the expression 
becomes the same as the initial expression. 
However, if P aborts, the whole expression is 
aborted. 

The value ZI passed between the processes can 
be of any size, it is the responsibility of the receiv- 
ing process to interpret the data. 

The operators above can e.g. be used in an op- 
portunistic planning mechanism. Consider an ex- 
ample where the robot is tidying up a room where 
the objects are randomly spread out. The robot 
knows where every object is supposed to be, but 
to solve the task, no particular order in which ob- 
jects are put in place is implied. At the same time, 
we do not want the robot to spend infinitely much 
time searching for hidden objects so there must be 
a timeout as well. A simplified task description of 
this scenario could look like this: 

timeout 1! (FindObjectA:PlaceA, FindObjectB:PlaceB, 
Find0bjectC:PlaceC) 

where the three “FindObject” processes run 
concurrently and when either one of them termi- 
nates, the corresponding “Place” process will run. 
The whole expression will not terminate until ei- 
ther the timeout terminates or the objects A, B 
and C have been placed. 

Of course, in a more realistic implementation of 
the above, there also have to be processes moni- 
toring the availability of exclusive resources and 
preventing a timeout from happening while plac- 
ing an object that is found. 

3 Modular Software Development Envi- 
ronment 

The Modular Software Development Environ- 
ment (MSDE) provides support for the develop- 
ment of modular software systems. The heart of 
MSDE is a communications library called Gener- 
alComms and a number of other services are used 
to support modular programming. 
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3.1 GeneralComms updated as well as is possible in the face of an 
intermittent communications link. 

GeneralComms provides an abstraction of com- 
munication and event-based programming across 4 Distributed Control Architecture 
a number of platforms. GeneralComms was in- 
spired by the Adaptive Communications Environ- 
ment (ACE) package[6]. However, the ACE pack- 
age requires a modern C++ compiler and results 
in very large compiled programs. In addition to 
event-based communications, GeneralComms in- 
cludes methods for packing and unpacking mes- 
sages in a portable manner. 

The distributed control architecture builds on 
the MSDE components described in Section 3 
above and provides a suitable user interface. 

The DCA consists of instances of two function- 
ally different parts. There is a supervisor, DCAS, 
that organises the execution of a subset of con- 
troller modules. 

4.1 The Supervisor (DCAS) 
3.2 Nameserver 

The supervisor has two means of receiving infor- 
processes to register mation about the processes to run, a parser read- 

their communication parameters (e.g. host and ing a text file describing the control system or a 

a control system, a DCAS is started with com- name in a portable fashion. The Nameserver in- 
cludes the ability to locate peer Nameservers and mand line parameters specifying a text file. This 

is then interpreted, causing the DCAS to start the to share information with them. 

3.3 Timerserver local controller modules it is in charge of as well as 
starting sub-DCAS supervisors if necessary. The 

The Timerserver provides high-resolution tim- information that is not used at the level of the 
ing events. Generally, hardware systems Provide first DCAS is then passed down to the appropri- 
a ’  limited number of high-resolution timers (of- ate DCAS on a sub level using the binary inter- 

The sively until the whole tree structure is started. It 
Timerserver does very little processing and so has is here important to note that even if process is 
a low overhead. “started” it is not running. To deal with real-time 

issues, all processes are in fact started beforehand, 3.4 Executer 
but inactive. When all processes are started, an- 

The Executer allows authenticated user pro- other walk through the tree is made to connect 
grams to execute further programs on the same all the different modules. Also here, all connec- 
host. Each host which will be used within the tions are made beforehand but may be inactive. 
distributed control system must have an Executer Connections between different process groups, i.e. 
running. The Executer allows the DCA to start managed by different DCAS, are resolved to go di- 
the components of the user’s control system. rectly from one controller to  another without pass- 

ing any communication traffic through the DCAS. 
That makes the communication between process 3.5 DBManager 

The database manager provides access to a groups as efficient as within one group. 
repository which can be used for configuration Further on, it is only when the root DCAS has 
data, passwords and other data. At present, there received a confirmation that the whole tree is suc- 
is only support for a single, centralised database cessfully configured that it gives the signal to run 
but we plan to implement decentralised databases. the system. Every DCAS is then only taking care 
Decentralised databases are particularly impor- of the local events, and only if the process group 
tant for mobile robotics. Consider a team of mo- emits an event, it is talking to the DCAS on the 
bile robots moving around. To continue opera- level above. 
tion, each must have access to the database, how- Whenever a DCAS receives an event it is sent to 
ever there are usually limitations on communica- the process algebra interpreter in the DCAS. It is 
tions range. Therefore, we intend to replicate the from the impact of that event that the DCAS then 
database on each of the robots and use the con- decides which processes to initialise, run, stop or 
cept of transactions to keep all of the databases reconnect. 
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I DCAS I 

-6 Controller Controller 

Figure 1: A typical tree built from a definition file 
read by the top DCAS. All subsequent DCAS re- 
ceives their information from above. connections 
between controllers are not shown in this figure. 
Note that every node in the tree can run on an 
arbitrary host . 

4.2 Controller Modules 

The actual work is made by the controller mod- 
ules which can be described as leaves in the hierar- 
chy of processes. These have well defined commu- 
nication interfaces with functions such as Init(), 
Run() and Stop(). The core functionality is lo- 
cated in a base class, so a user that wants to imple- 
ment a new class of controller, only has to inherit 
from that and implement the controller specific 
parts. Typically, a user has to do these few steps: 

I 
I 

I 
I 

I Approach 
I 

I 
Hu;( 2 I 

I 

I 
I 

I 

DoorOpen Control 
I I 

I , , , - - , , - , , , , - , , - '  

Figure 2: A complete door opening system. In this 
example, host 1 is dedicated to computer vision, 
host 2 controls the mobile platform and host 3 
is running a real-time OS for manipulation tasks. 
Note that in the case of a compound process, there 
may be several hosts. 

process algebra proves useful in sequencing the ac- 
tions although there is not any opportunistic plan- 
ning as in the previous example. This example 

Assign to inputs and Outputs in a 'On- demonstrates that an otherwise very tedious task 
of distributing the processes over several comput- structor. 

Write code to initialise sensors, hardware or ers and making them talk to each other is feasible 
local variables in the Init() function. in DCA. All the charachteristics of the system, in- 

cluding the state changes, is captured in one place. 
Start a timer in the Run() function if the con- Figure 2 shows a complete door opening system 
troller is repetitive. capable of locating the door handle by the use 
Write the control loop in a function Main- of visual servoing, detecting distance to the door 

the door handle and finally opening the door. The calculation is performed and the result is sent 
contents of compound processes are shown in the to the corresponding outputs. 
Figures 3 - 6 .  

Write code to gracefully disconnect from All processes to the left in Figure 2 deliver ve- 
hardware and s t ~ ~  the timer in the Stop() locity control signals to the motion controller pro- 
function so that Init() can be called again. cess, which in turn has a redundancy resolution 

Calc(). The inputs can be read, necessary with a laser range grasping and Pressing 

Example Scenario 
module inside as shown in Figure 3. In the case of 
a mobile manipulator, or any redundant system, it 

In this section a fairly advanced problem such is necessary to distribute the motion in a suitable 
as opening a door is considered. This task demon- way over the degrees of freedom available. 
strates a distributed problem, not only over sev- Figure 4 shows the most complex process group 
era1 processes but also over a number of hosts. The where three different control schemes are fused 
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Motion Control Distance Detector 
1- - - - - - - - - - - - - U - - - - - - - - - - - -  

- - - - - - - - - -  
I 
I 

Hart 2 I I I 
I 

I Range 
I Sensor 

I - , , - , - - - - - - - , - , - -  

Figure 5: A process group monitoring the distance 

I 
I 

I 

Pum,&O 
Control to the door. 

I I 
I I - - , , - - - - - , - - , , - , - ,  

Figure 3: A process group taking care of redun- 
dancy resolution and control of the XR4000 and 
the Puma560. 

Hurl 3 I=H-t-, Compliant Control 

I 

Horl2 

Model-based 
Control Add Vel 

I 
I 

Config 
Control 

I I 

Figure 4: The process group solving the task of 
opening the door. Three different control schemes 
are fused into one velocity signal. 

' , H o s t 3  

~ -,Ho;irce , I I I 

Threshold ForcelTorque 

I 

Figure 6: A process group monitoring the forces 
on the force/torque sensor. 

gripper is opened while approaching the door han- 
dle. When a hit is detected, i.e. the gripper has 
reached the handle, that group is disabled and a 
sequence of closing the gripper, pressing the han- 
dle and opening the door is started. 

An almost complete description of the processes 
is shown in the Appendix. Note that due to space 
limitations the internal connections are left out. 

6 Conclusion 

In this paper, we have presented an architecture 
for building distributed control systems. DCA 

into one velocity control Signal. This algorithm, has been specifically designed and implemented 
although not in this framework, is described in for modularity and scalability. addition, we 
the Paper and it Proved SUCcesSfUl in spite of have used a process algebra for DCA, providing 
its simplicity. a theoretically sound basis and permitting verifi- 

There are two processes monitoring Special Con- cation, When designing and implementing DCA 
ditions (see Figure 5 and 6), the distance stop- we have sought to maintain flexibility and gener- 
Ping criteria and the hit detector. When these ality whilst achieving efficiency. The result is very 
processes terminate they are used to disable the flexible and Can achieve quite good real time per- 
concurrent processes. formance. The example scenario presented illus- 

A description of the task using the operators trates the ease with which modular systems can be 
described earlier can look like this: designed. In the absence of any convincing alter- 

natives, we believe that DCA is a highly suitable 
MotionControl , ((VisualServoing 11 DistDetector) ; tool for the implementation of distributed control 

((OpenCripper, Approach) t HitDetector) ; 
CloseCripper ; PressHandle ; Dooropen) systems. 

Acknowledgements 
This states that the motion controller should 

run at all times, while the visual servoing con- This work was sponsored in part by the Swedish 
tinues until a certain distance has been reached Foundation for Strategic Research through its 
and the distance detector disables it. Then, the Centre for Autonomous Systems at KTH. 

2367 



References 

D. Lyons and M. Arbib, “A formal model of computation for 
sensory-based robotics,” no. 3, pp. 280-293, 1989. 

R. Simmons, R. Goodwin, C. Fedor, and J. Basista, “Task 
control architecture programmer’s guide to version 8.0.” 
http://www.cs.cmu.edu/Nreids, May 1997. 

J. K. Rosenblatt, DAMN: A Distributed Architecture for 
Mobile Navigation. PhD thesis, The Robotics Institute, 
Carnegie Mellon University, 1997. CMU-RI-TR-97-01, 

K. Konolige and K. Myers, “The saphira architecture for 
autonomous mobile robots.” Book chapter, available at 
http://www.ai.sri.com/Nkonolige/sapphira/. 

M. Lindstrom, A. Orebzeck, and H. Christensen, “A flexi- 
ble architecture for a service robot,” in IEEE Conference 
on Robotics and Automation, (Detroit, MI), p. (Submitted), 
May 1999. 

D. C. Schmidt, “Adaptive communications environment 
(ace).” http://www.cs.wustl.edu/Nschmidt/ACE.html. 

C. Kalt, “Rfc 2810: Irc architecture.” 
ftp://ftp.irc.org/irc/docs/rfc2810.txt. 

T .  0. M. Group, “Corba/iiop 2.4 specification.” See 
http:/ /www.omg.org/. 

L. Petersson, D. J. Austin, and D. Kragic, “High-level control 
of a mobile manipulator for door opening,” in Proc. of Int. 
Conference on Intelligent Robots and Systems (IROS), 2000. 

Appendix A 

Realization of Door Opening 

A realization of the door opening system in the 
framework of DCA is shown below. Note that inter- 
nal connections are omitted due to space limitations. 

process MotionControl(host1, host2){ 
hostihostl} 
instantiated-processesi 

xr4000 instof XR4000Ctrl(host2); 
puma instof Puma560Ctrl(hostl) ; 
redundancy instof RedundancyResolution(host1); 

> 
external-ioC 

In = redundancy, In; 
> 
internal-event-actionst 

// Run all processes concurrently 
redundancy Clbll] , xr4000, puma 

> 
> 
process HitDetector(host1)C 

hostChostl1 
instantiated-processes< 

force instof ForceTorque(host1); 
threshold instof Force~reshold(host1); 

> 
external-io< 

// No external 1/0 
1 
internal-event-actions( 

// Run both processes concurrently 
forceClbll1, threshold 

1 
> 

hostIhostl) 
instantiated-processesi 

laser instof LaserSensor(host1); 
threshold instof DistanceThreshold(h0st 1) ; 

1 
external-io< 

// No external I / O  
1 
internal-event-actions{ 

// Run both processes concurrently 
laser[lbltl, threshold 

1 
> 
process DoorDpen(host1, host2)< 

hostihostl) 
instant iated-processes< 

force instof ForceTorque(host1); 
compliant instof CompliantCtrl(host1); 
xr4000 instof XR40000dometry(host2); 
puma instof Puma56OJoints(hostl); 
model instof ModelBasedCtrl(host1) ; 
config instof ConfigCtrl(host1); 
add instof AddVelocity(host1); 

> 
external-io< 

> 
interPal-event-actions~ 

Out = add, Out; 

// Run all processes concurrently 
force [lblll , xr4000 [lblll , pumaClbll1, 
compliant Clbli] , model Clblll, conf igClbll1, add 

> 
> 
process DoorOpenSystem(host1, host2, host3){ 

host(host3) 
instant iated-processes{ 

visualserv instof VisualServoing(host1); 
approach instof LinearTrajectory(host3); 
presshandle instof PressHandle(host3); 
dooropen instof DoorOpen(host3, host2); 
motionctrl instof MotionControl(host3, host?); 
hit instof HitDetector(host3); 
distdetect instof DistDetector(host2); 
opengrip instof CripperControl(host3, “open”); 
closegrip instof GripperControl(host3, “close”); 

3 
external- io{ 

// No external 1/0 
1 
internal-event-actionsC 

MotionControl , 
((VisualServoing[lbll] t DistDetector) ; 
((OpenGripper, Approach[lblll) t HitDetector) ; 
CloseCripper ; PressHandle Clblll ; DoorOpenClbll] ) 

> 
> 
process mainOt 

instantiated-processes{ 
dooropensyst instof DoorOpenSystem(”cl.nada.kth.se”, 

“c2 .nada. kth. se“, 
“c3. nada . kth . se“ 1 ; 

> 
internal_event_actions< 

> 
dooropensyst 

1 

process DistanceDetector (host 1) { 
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