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In control systems where feedback data rates are limited, reliability of

communications can drastically affect system stability and there is

a trade-off between communication rate and optimal performance.

By Girish N. Nair, Member IEEE, Fabio Fagnani, Sandro Zampieri, and

Robin J. Evans, Fellow IEEE

ABSTRACT | The emerging area of control with limited data

rates incorporates ideas from both control and information

theory. The data rate constraint introduces quantization into

the feedback loop and gives the interconnected system a two-

fold nature, continuous and symbolic. In this paper, we review

the results available in the literature on data-rate-limited

control. For linear systems, we show how fundamental trade-

offs between the data rate and control goals, such as stability,

mean entry times, and asymptotic state norms, emerge

naturally. While many classical tools from both control and

information theory can still be used in this context, it turns out

that the deepest results necessitate a novel, integrated view of

both disciplines.
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I . INTRODUCTION

Communications and control have traditionally been areas

with little common ground. Communications theory is

mainly concerned with the reliable transmission of

information from one point to another, and is relatively
indifferent to the specific purpose of the transmitted

information and whether it is eventually fed back to the

source. Control theory, in contrast, is concerned mainly

with using information in a feedback loop to achieve some

performance objective, and usually assumes that limita-

tions in the communication links do not affect perfor-

mance significantly.

In engineering systems with large communication

bandwidth, it makes sense to treat communication and
control as independent functions, since the analysis and

design of the overall system is simplified. However, recent

emerging applications, such as sensor networks, micro-

electromechanical systems, mobile telephony, and indus-

trial control networks, have begun to challenge the validity

of this modular approach. In these applications, the aim is

to control one or more dynamical systems, using multiple

sensors and actuators transmitting and receiving informa-
tion over a digital communication network.

Although the total communication capacity in bits per

second may be large, each component is effectively

allocated only a small portion. This can introduce large

quantization errors that impinge on control performance,

due to the low resolution of the transmitted data.

Quantization errors are not a new topic in control

theory, and there exists a significant body of work in which
quantization is modeled as extra additive white noise,

thereby allowing the standard solutions of stochastic

control to still be applied; see, e.g., [16]. Though this

approach is reasonable if the quantizer resolution is high,

it is invalid if the resolution is coarse and the open-loop

dynamics are unstable. In particular, it fails to capture the

fact, discovered only recently in [5], [81], that there exists

a critical positive data rate below which there does not
exist any quantization and control scheme able to stabilize

an unstable plant. This phenomenon strongly implies that

low communication capacity has a significant negative
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effect on the attainable control performance. Clearly, a
much more rigorous analysis is required, in which the

communication and control aspects are considered jointly

rather than in isolation.

Though large networked systems with multiple sensors

and actuators are the driving motivation for the results

described here, the first step towards understanding them

is to analyze the simplest possible network topology,

consisting of one controller and one dynamical system
connected by a feedback loop with a given data rate in bits

per unit time. Real digital communications channels of

course offer a variety of other challenges, such as bit

errors, random delays, erasures, etc., but in this paper we

focus exclusively on explaining the limitations imposed by

the constrained data rate.

Within this perimeter, the most fundamental question

which can be asked is: what is the smallest feedback data
rate above which a given dynamical system can somehow

be stabilized? This is analogous to Shannon’s source coding
theory, which seeks to determine the smallest data rate

above which a given random process can be reliably

communicated, i.e., with arbitrarily small probability of

error [14], [73]. The crucial difference however, is that in

control systems the data are not just transmitted from one

point to another, but are used in a feedback loop.
Moving beyond stability, the next question is: given a

dynamical system, how can one characterize the funda-

mental tradeoff that must exist between the communica-

tion rate and the optimal attainable control performance?

This is the control-theoretic version of Shannon’s rate-
distortion theory for digital communications [7], [74]. The

main aim of this paper is to formulate these questions for

linear dynamical systems, and to explain some of the
answers offered in the literature. However, before doing

so, we first provide a brief overview of some of the major

contributions to data-rate-limited control in the literature.

We then sketch the contents of this paper in more detail.

A. Overview of the Literature
As discussed above, there are striking analogies

between the goals of data-rate-limited control, and those
of source coding and rate-distortion in information theory

[7], [73]. Despite this, information theory has been of

limited value in real-time networked control systems,

since the bounds it yields rely on coders with arbitrarily

long block lengths and delays. This can have a particularly

severe effect if the system has unstable dynamics.

Somewhat more progress on this topic has been made

in the control literature, especially in recent years. As
mentioned above, quantizers in control systems were

traditionally modeled as sources of extra additive white

noise. The shortcomings of this approach were made very

clear in the seminal paper [20], in which it was shown that

a noiseless and unstable linear plant with eigenvalues less

than 2 in magnitude could still be asymptotically con-

trolled to the origin using memoryless quantization of the

state, but if an eigenvalue magnitude was larger than 2
then chaotic trajectories resulted. This result was com-

pletely beyond the reach of the white noise model, and

underlined the importance of a pursuing a rigorous

analysis of coding and quantization in feedback systems.

Subsequently, the first results on minimum data rates

for stabilizability appeared in [4], [81], where it was shown

that a noiseless scalar plant with parameter jaj 9 1 can be

kept bounded by memoryless quantized control if and only
if the available data rate exceeds log2 jaj bits per sample.

These results were the first instances of the Data Rate
Theorem. Similar tight bounds were subsequently obtained

for the asymptotic stabilizability of noiseless autoregres-

sive moving average systems [58], and linear state-space

systems [34], [59], [77], using different formulations and

techniques.

The improvement from boundedness to asymptotic
stability above becomes possible by permitting the

quantizer or encoder to possess memory, and follow an

adaptive zooming-in/zooming out strategy [12], [44], [65].

This is based on dynamically adjusting the range of the

quantizer so that it increases as the plant state approaches

the target (zooming-in phase), and decreases if the state

diverges from the target (zooming-out phase). The

underlying intuition is that, in order to drive the state to
the target, the quantizer resolution should be high close to

the target but coarse far from it. We remark that these

techniques can be easily adapted to synthesize controllers

yielding guaranteed rates of state convergence. Indeed,

with encoder memory the infinite-horizon quadratic

regulation cost for a noiseless linear plant may be brought

as close as pleased to the to the classical optimal linear

quadratic regulation (LQR) cost, provided that the average
data rate exceeds the intrinsic entropy rate H (defined in

Section II) of the plant [72]. The same problem but with a

limited instantaneous data rate is explicitly solved for scalar

plants in [63]. In this case, the optimal cost is, as expected,

strictly greater than the classical cost, but approaches it

asymptotically with increasing rate.

The idea of increasing quantizer resolution close to the

origin can also be applied to memoryless quantizers. It has
been shown that, if the number of quantization levels is

not constrained a priori, then the most efficient quantizer

for obtaining stability with respect to a quadratic Lyapunov

function is logarithmic [22]. The design of logarithmically

and uniformly quantized controllers that achieve specifed

levels of quadratic attractivity is considered in [35]–[37]. In

the recent article [30] a sector bound approach is used to

study logarithmically quantized systems, in terms of
quadratic stability as well as H2 and H1 performance

criteria.

The issue of robustness has also been considered, both

with respect to variations in the plant [66], and in the

effective data rate of the channel [42]. In the latter article,

it is proved that if a noiseless linear plant in continuous

time is quantized and controlled without memory, then
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the strategy which is most robust to changes in the data
packet transfer time is binary quantization with short

sampling intervals. We also remark that stability in the

presence of additive disturbances with known bound is

considered in [34], [46], and [77]. In particular, the last-

mentioned article presents a zooming quantized control

policy which achieves input-to-state stability for linear

systems, without knowledge of a disturbance bound.

Various extensions of the techniques above have been
proposed for nonlinear systems [6], [9], [18], [19], [45],

[48], [62]. The article [45] applies the zooming strategy to

input-to-state-stable nonlinear systems to guaran-

tee asymptotic stability. The same techniques are

used in [18], but with the ISS assumption on the

plant relaxed to asymptotic stabilizability. In [62],

the data rate necessary to stabilize a nonlinear

system is connected to the concept of the
topological feedback entropy of a nonlinear plant.

This notion generalizes the well-known topolog-

ical entropy of a nonlinear system without inputs

[1], [41], [68]. The article [48] extends the

logarithmic quantization strategy to affine non-

linear systems, and in [19] bit-rate bounds for

stabilizing nonlinear systems with a feedforward

structure are derived. See also the papers [33], [83] for
related results on the adaptive stabilization of uncertain

plants.

All the results above concern plants that are determin-

istic apart from a possibly random initial condition. With

regard to stochastic plants, the major contributions have

been in [10], [50], [52], [57], [60], [79], [80]. In [10], data-

rate-limited control of partially observed linear Gaussian

systems is considered under a quadratic cost. It is shown
there that if the measurements are passed through a

minimum variance filter, and the input to the quantizer is

chosen to be the innovations of the filter process, then the

design of the coding and control laws can be performed

separately. Separation and certainty equivalence for linear

Gaussian plants are addressed in a more general setting in

[79], which also presents rate-distortion-theoretic lower

bounds on performance over additive white Gaussian noise
channels and high rate noiseless digital channels. The

article [80] gives necessary and sufficient conditions

for stabilizing single-input, single-output, linear time-

invariant (LTI) Gaussian plants, using uniform quantizers

and variable length coding, under the restriction that the

controller must also be LTI. In the paper [60], the mean

square stabilizability of linear plants with possibly non-

Gaussian noise is considered. By exploiting the properties
of differential entropy power, a universal lower bound is

obtained on the time-asymptotic mean square state norm.

In particular, this bound implies that as the data rate

approaches the intrinsic entropy rate H of the plant, the

mean square state becomes arbitrarily large, regardless of

the coding and control scheme. The recent article [50] also

has the same flavour of result, showing that as the Shannon

capacity C of the feedback channel decreases towards H,
the ability of the controller to shape the plant input power

spectrum diminishes.

The possibility of obtaining tight bounds on the data

rate necessary to stabilize a system is based on the use of

dynamic encoders and controllers with unlimited memory.

The analysis is much more intricate if we restrict to

memoryless or finite memory schemes. Under memory-

less, finite-level quantization, the set of reachable points is
discrete or at most dense [3], [9], and only practical

stability can be achieved, namely states in some initial set

can be driven to a smaller target set, and not asymptotically

to the origin [5], [20], [24], [67], [81]. The main difficulty
in this case is due to the fact that performance should be

evaluated through a pair of indices, one depending on the

steady-state properties of the closed-loop system, the sec-

ond on the quality of the transient [25], [26]. This prevents

the existence of a unique optimal controller, since it would

generally depend on the weights associated with the two

indices. Even though memoryless quantizers and con-

trollers have been studied for longer, since the seminal
paper of Delchamps [20], results on the achievable perfor-

mance in this case are still quite arduous to obtain and

difficult to interpret [25], [26]. The simplest contribution

in this field shows that, according to the relative weights

assigned to the steady state and to the transient, there are

three different optimal strategies: the first based on the

uniform quantizer, widely used in applications, the second

on the logarithmic quantizer [22], similar to the �- and
A-law companders of communications [69], and the third

on the chaotic quantizer, recently studied in [23] and [24].

In the framework of memoryless quantization, a recent

paper by Delvenne [21] is very promising, because it seems

to provide a new perspective which makes the problem

much more treatable.

Though the focus of this paper is on control over

noiseless digital channels, we remark here that a number
of results on noisy channels have recently been proposed.

Various models of the channel have been treated, e.g., the

digital erasure channel [47], [54], [78], the binary sym-

metric channel [53], [71], [75], and the truncation channel

[51]. If the communication channel between the sensor

As the data rate approaches the
intrinsic entropy rate H of the
plant, the mean square state
becomes arbitrarily large,
regardless of the coding
and control scheme.
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and controller is erroneous, the stabilization problem
becomes very complicated, and the results can depend

critically on the particular notion of stability, and whether

or not the transmitter has side-information on the channel

errors that have occured [47], [51], [54], [75], [78]. The

main point is that we cannot generally adopt the Shannon

concept of capacity C as the relevant figure-of-merit for

noisy channels in feedback control systems. Although the

inequality C 9 H is both necessary and sufficient for
almost sure asymptotic stabilizability without side-

information [53], this bound does not hold true for other

stability objectives, e.g., mean square stability. The reason

is that in Shannon coding theory, reliable transmission at a

rate close to C is possible only at the price of significantly

increasing the coding delay. However, as this delay is

increased, the plant state will be driven further from the

origin, and so more information again will be needed to
stabilize it. In [71], the novel concept of anytime capacity is

introduced, a notion which takes into consideration the

recursive structure of incoming data. It is argued that if the

control objective is moment stability, then anytime, not

Shannon, capacity is the correct figure of merit for the

noisy channel. Unlike Shannon capacity however, anytime

capacity does not in general have a simple expression

amenable to computation; this, at the moment, is its main
drawback. Notwithstanding the preceding discussion, it

turns out that when the channel is analog with additive

Gaussian noise, and the plant is linear Gaussian, the

inequality C 9 H is necessary and sufficient for mean

square stabilizability, with no quantization or coding

required [29], [79]. See also [17], [70] for related results

on noisy bandlimited analog channels.

All the articles described above focus on systems with
one sensor and one actuator. However, as remarked at the

start of this section, the main application for this research is

in networked control systems with multiple sensors and

actuators. Steps have been recently taken towards deriving

fundamental necessary and sufficient rate regions for the

stabilizability of such systems, for the case of multiple

sensors with a single actuator [55], [76], and with multiple

actuators [56], [61], assuming no noise. Channel noise and
coding strategies for networked systems are considered in

[43], and in [32] a model predictive approach is proposed

for designing a centralized control strategy for a noisy linear

system with multiple, separately quantized inputs and

outputs. Finally, we remark that there are two other strands

of research on systems with multiple sensors and actuators,

in which quantization and data rate limitations are largely

ignored. One focuses primarily on scheduling and commu-
nication medium access protocol designVsee, e.g., [13]

and [64]. The other arises from coordination problems in

which the main interest is on decentralized strategies and

the graph-theoretic aspects of the required information

flows. The special issue [2] contains recent articles along

these lines, as well as discussions of other communication

issues such as variable delay and random dropouts.

B. Overview of Paper
The aim of the present paper is to present some of the

main ideas that form the basis of this field of research. The

style will be between a tutorial, with an attempt to cover

the multiple aspects of the problem, and a technical paper

proposing some new results.

Indeed, in the next section we present new universal

lower bounds on feedback data rate and performance for

linear systems with deterministic bounded disturbances.
The elementary nature of our arguments will hopefully

permit the essential aspects of the problem of data-rate-

limited control to emerge more clearly. It also lets us

easily relate both the data rate and channel delay to the

degradation in attainable performance, an original

contribution.

On the other hand, in order to maintain the tutorial

character of the paper, in the construction of the encoder
and controller in Section II-B, we prefer to focus on scalar

systems. The same has been done in Sections IV and V.

In Section III, we discuss what is known about the

structure of coding and control schemes for stochastic

linear plants. Building on the arguments in [79], we

demonstrate that certainty equivalence and a separation-

like property apply under a quadratic cost. In other words,

the joint coding and control optimization problem can be
solved by encoding the plant states so as to minimize a

certain distortion metric, and then using the decoded

estimate in a certainty equivalent control law. However,

complete separation between coding and control is not

attained, since the coder distortion metric depends on the

control input matrix as well as the plant dynamical matrix.

In Section III, we also discuss the fact that if a linear

plant has at least one strictly unstable mode and either the
initial condition or process noise distribution has infinite

support, then no time-invariant coding and control law

with a finite-valued internal state can stabilize the plant.

This rules out many common coding schemes, such as

memoryless quantization and differential pulse code mod-
ulation, from infinite-horizon stochastic control problems.

Instead, coder-controllers with continuous-valued internal

states must be considered, similar to the zooming
quantizers of [12].

In Section IV we restrict to control strategies in which

the encoder and the controller can have finite memory,

namely their state spaces have finitely many elements. It is

not surprising that this restriction complicates the

analysis. It is surprising instead that the particular case

of memoryless controllers, which is important in applica-

tions, basically maintains these difficulties. As mentioned
before, in this case only practical stability is obtainable

when starting from unstable plants, and so the perfor-

mance has to be described by two conflicting parameters,

one describing the steady-state behavior, the other de-

scribing the transient behavior of the closed-loop system.

In this analysis we follow the approach recently proposed

in [21], with some original extensions. We present both a
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general bound highlighting the relations between the
performance parameters and the complexity of the control

scheme, and two control techniques that allow this bound

to be attained in some particular cases.

The analysis becomes even more arduous if we restrict

to quatization laws with connected quantization regions.
The aim of Section V is to present some fundamental

bounds relating the controller complexity and the perfor-

mance in this case, as well as a brief description of the

fundamental synthesis techniques which can be proposed

in this case, namely the zooming-in/zooming-out strategy,

the uniform quantizer strategy, the logarithmic quantizer

strategy and the chaos based strategy. In addition, we

briefly present some of the robustness results proposed in
[42] that characterize the relation between quantization

and sampling period in the control of continuous time

systems.

We conclude this paper with a section devoted to

conclusions, containing a list of problems which we think

should be considered in future research.

Notation: The symbol Rn will denote the set of the
n-dimensional column vectors with real entries while Rn�m

means the set of the n � m matrices with real entries. If

A is a square matrix, det A denotes its determinant. The

2-norm of a vector x 2 Rn will be denoted by kxk. Dis-

crete time is denoted by t 2 ½0; 1; 2; . . .Þ, and the symbol

at is used to indicate an element of a sequence. Where

there is no risk of confusion, the entire sequence is also

denoted by at; otherwise the more explicit notation
fatgt 
 0 is used. If S is a finite set, kSk represents its

cardinality, namely the number of its elements. If X is a

measurable subset of Rn, the symbol �ðXÞ means the

Lebesgue measure of X.

II . CODING AND CONTROL SCHEMES
WITH UNRESTRICTED MEMORY

In this section, we present a formulation of the problem of

communication-limited control for linear time-invariant

systems with additive disturbances. For the sake of

generality, we permit the coding and control policy to

have possibly unrestricted memory,1 and as our emphasis

here is primarily on understanding the effects of finite data
rate and delay, we assume that the digital channel used for

feedback is errorless, with a constant propagation delay.

The main results of this section, Theorem 1 and

Proposition 1, present fundamental lower bounds

on the allowed data rate and time-asymptotic

state norm for all stabilizing policies.

The framework presented in this section is

essentially that of [60], in which the disturbances
were modeled as possibly non-Gaussian random

vectors. For the sake of simplicity, we adopt a

deterministic viewpoint here, and regard the

disturbances as bounded unknowns. The key

ideasVnamely the linear amplification, addition,

and partitioning of uncertainty volumesVremain the

same, and in fact emerge more clearly.

Nonetheless, there is an important aspect of the
stochastic problem, namely the instability of all finite-state
coding and control schemes, which has no parallel in the

deterministic framework. This is discussed briefly in

Section III-B. In addition, in the deterministic setup, the

universal lower bound on the state magnitude is tight for

scalar plants. That is, for one-dimensional systems we

obtain an exact characterization of the fundamental

tradeoffs between data rate, delay, and Bcheap[ control
performance.

Consider the partially observed, discrete-time linear

plant

xtþ1 = Axt þ But þ vt,

yt = Cxt þ wt,

�
8t 
 0 (1)

where xt 2 Rn is the state at time t 
 0, ut 2 Rm is the

control input, yt 2 Rp is the measured output, vt 2 Rn is
unknown process noise, wt 2 Rp is unknown measurement

noise, and A, B, and C are constant known matrices of

appropriate dimensions. For the problem to be well-posed,

it is also assumed that the pair ðA; BÞ is reachable, and

ðC; AÞ, observable.

Without loss of generality, it may be supposed that a

similarity transformation has been applied to the state

coordinates so that the stable and unstable modes of the
plant are decoupled, i.e.,

A ¼ Au 0

0 As

� �
(2)

where all the eigenvalues of Au 2 Rf�f have magnitudes


 1, all those of As 2 Rn�f have magnitudes G 1 and

where the 0’s denote matrices with zero entries of

appropriate dimensions. It turns out that in all our results
the stable part does not play any key role. For the sake of

The key ideasVnamely, the
linear amplification, addition,

and partitioning of uncertainty
volumesVremain the same, and

in fact emerge more clearly.

1We note in advance that there exist stabilizing policies with finite-
dimensional memory.
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keeping the notation as simple as possible, we therefore
assume from now on that A ¼ Au, namely that all

eigenvalues have magnitudes 
 1. We also define the

intrinsic entropy rate of the plant to be

H :¼ log2 jdetAj: (3)

As mentioned above, in order to simplify the analysis

we assume in this section that x0, vt, wt are determin-

istic unknowns, belonging to bounded and Lebesgue-

measurable sets X 0 � Rn, V � Rn, W � Rp, respectively.

Suppose that the sensors that measure the plant output

are located some distance away from the controller, and
communicate with it over a digital channel, onto which

one symbol st from a finite alphabet S of cardinality

M 
 1, is transmitted during the ðt þ 1Þth sampling

interval. In many practical applications, the channel is

inherently noisy because of interfering transmissions,

background noise, contention with other users, and so on.

However, by assuming that appropriate error correction

coding or repeat request protocols are in place at lower
levels of the communication protocol, we can view the

channel as being noiseless, with possibly a constant

propagation delay of d sampling intervals.2 We define

the data rate of the channel as

R :¼ log2 Mðbits=sampleÞ: (4)

As the symbols in the channel are discrete-valued but

the plant measurements are continuous-valued, analog-to-

digital conversion, or coding, is required. In practice
constraints such as complexity and finite memory may be

important but, in the spirit of source coding [73], such

limitations will be ignored in this section to concentrate on

the communication aspect of the problem. Each transmit-

ted symbol may thus depend on all past and present

measurements and past symbols

st ¼ �tðyt; . . . ; y0; st�1; . . . ; s0Þ 2 S; 8t 
 0 (5)

where �t : R
p�ðtþ1Þ � St ! S is the coder mapping at

time t. Each transmitted symbol experiences a propagation

delay of d sampling intervals, so at time t the controller has

the symbols s0; . . . ; st�d available. It can then apply a

control law of the general form

ut ¼ �tðst�d; . . . ; s0Þ 2 Rm; 8t 
 0 (6)

where �t : St�dþ1 ! Rm is the controller mapping at

time t.3 Fig. 1 illustrates the control scheme which results
from these considerations.

Let the coder-controller be defined as the pair of coder

and controller mapping sequences ð�; �Þ :¼ ðf�tgt 
 0;
f�tgt 
 0Þ, and let C be the set of all such pairs. We quantify

the performance of a coder-controller by the asymptotic

worst-case state norm

J :¼ lim
t!1

sup
�

kxtk : x0 2 X 0; :

vj 2 V;wj 2 W; j ¼ 0; 1; . . .
�
: (7)

In other words, we are interested in how small the state

can be made in the long-term worst case scenario, if no
cost is placed on the controls and the data rate is fixed. In

the sequel, we employ elementary arguments to derive a

universal lower bound on the cost of any coder-controller,

in terms of the open-loop dynamics, the data rate R, and

the channel delay d.

A. Universal Lower Bounds
We now proceed to obtain universal lower bounds that

apply to any causal coder-controller, by studying the

evolution of state uncertainty volumes. The first result,

Theorem 1, presents universal lower bounds on data rate

and worst case asymptotic state norm applicable to all

stabilizing coder-controllers. The second result, in Prop-

osition 1, is a tighter bound which also captures the effect

of channel delay. For the case of scalar systems, it is in fact

optimal.
The basic intuition we use to establish these results is

that the open-loop growth in subspace uncertainty volume

2If a retransmission protocol is in use at a lower level, then the
sampling interval cannot be too short.

3We adopt the convention that the first d control signals u0; . . . ; ud�1,
that cannot be obtained from (6), are known preset inputs. Similarly, in
the coder (5) at time t ¼ 0, s0 is taken to be a function only of y0, namely
s0 ¼ �0ðy0Þ.

Fig. 1. Scheme representing the control under communication

constraints.
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must be counteracted by a reduction in volume due to the
coding partitions. As it turns out, volumes are much easier

to analyze directly than vector norms because of several

convenient mathematical properties not possessed by

vector norms. The basic techniques in this section were

originally used in a stochastic setting, with differential
entropy power being the stochastic version of 2=nth power

uncertainty volume, and the entropy power inequality
playing the role of the Brunn–Minkowski inequality below,
leading to a mean-square-sense analog of Theorem 1 [60].

However, we adopt a purely deterministic framework in

this paper so that the key ideas in the argument may come

through more clearly.

Conventions: Throughout the remainder of this section,

all system variables are to be understood to be implicit

functions on the domain fx0 2 X0; v0; v1 . . . 2 V;w0;
w1 . . . 2 Wg. For the sake of notational conciseness this

will not be indicated explicitly; only additional restrictions

are indicated. In particular, we will simply use the notation

supkxtk to denote

sup kxtk : x0 2 X 0; v0; v1 . . . 2 V;w0;w1 . . . 2 Wf g:

Theorem 1: Let any causal coder-controller (5), (6), with

data rate R (4), be applied to the noisy linear system (1),

with intrinsic entropy rate H (3). Then the following

bounds hold.

1) If R � H, and the process noise set V has Lebesgue
measure �ðVÞ 9 0, then

lim
t!1

sup kxtk ¼ 1

2) else if R 9 H, then

lim
t!1

sup kxtk 
 ��1=n�ðVÞ1=n

1 � 2�ðR�HÞ=n
(8)

where � is the volume of the n-dimensional

sphere with unit radius.

Proof: To begin the volume-based analysis, observe

that for any bounded measurable X � Rn, it clearly holds
that

�ðXÞ � � sup kxk : x 2 Xf gð Þn: (9)

Hence, if we put lt :¼ sup kxtk for t ¼ 0; 1; . . . , it holds
�lnt 
 �ðfxtgÞ. Further noting that fxtg � fxt : fsjgt�1

j¼0 ¼
fcjgt�1

j¼0g for any symbol values c0; . . . ; ct�1 2 S, we have

�1=nlt 
 max
c0;...;ct�12S

� xt : fsjgt�1
j¼0 ¼fcjgt�1

j¼0

n o� 	1=n

¼: mt: (10)

In what follows, we will obtain a recursive lower bound on

the nth root maximum state uncertainty volume mt.
Observe that

mtþ1 � max
fcjgt

j¼0

� xtþ1 : fsjgt
j¼0 ¼ fcjgt

j¼0

n o� 	1=n

¼ max
fcjgt

j¼0

� Axt þ B�t fcjgt�d
j¼0

� 	n�

þ vt : fsjgt
j¼0 ¼ fcjgt

j¼0

o	1=n

¼ max
fcjgt

j¼0

� Axt þ vt : fsjgt
j¼0

n�

¼ fcjgt
j¼0

o	1=n

(11)

using the fact that the volume of a set remains invariant

under a constant translation. Now, for any two sets

X ;Y � Rn, define the set sum X þ Y :¼ fx þ y : x 2 X ;
y 2 Yg. If X ;Y are Lebesgue-measurable, the Brunn–
Minkowski inequality (see, e.g., [14, p. 501]) states that

�ðX þ YÞ1=n 
 �ðXÞ1=n þ �ðYÞ1=n (12)

i.e., nth-root volume is super-additive. As vt does not de-

pend on the symbols c0; . . . ; ct, we can rewrite the set on

the right-hand side (RHS) of (11) as

Axt þ vt : fsjgt
j¼0 ¼ fcjgt

j¼0

n o
¼ Axt : fsjgt

j¼0 ¼ fcjgt
j¼0

n o
þ fvtg:

Applying the Brunn–Minkowski inequality, we then have

mtþ1 
 max
fcjgt

j¼0

� Axt : fsjgt
j¼0 ¼ fcjgt

j¼0

n o� 	1=n

þ � fvtgð Þ1=n;

¼ jdet Aj1=n max
fcjgt�1

j¼0

max
ct

� xt : fsjgt
j¼0 ¼ fcjgt

j¼0

n o� 	1=n

þ � fvtgð Þ1=n
(13)

Nair et al.: Feedback Control Under Data Rate Constraints: An Overview

114 Proceedings of the IEEE | Vol. 95, No. 1, January 2007



using the standard formula for volume change under linear
transformations. As st is a function of previous symbols,

and past and present states

xt :fsjgt�1
j¼0 ¼fcjgt�1

j¼0

n o
¼
[
ct2S

xt :fsjgt
j¼0 ¼fcjgt

j¼0

n o
:

Hence

� xt : fsjgt�1
j¼0 ¼ fcjgt�1

j¼0

n o� 	
�
X
ct2S

� xt : fsjgt
j¼0 ¼ fcjgt

j¼0

n o� 	

� M max
ct2St

� xt : fsjgt
j¼0 ¼ fcjgt

j¼0

n o� 	
:

Substituting this into (13), we obtain

mtþ1 
 jdet Aj1=n
max
fcjgt�1

j¼0

� M�1=n� xt : fsjgt�1
j¼0 ¼ fcjgt�1

j¼0

n o� 	1=n

þ � fvtgð Þ1=n

¼ det A

M

����
����

1=n

mt þ �ðVÞ1=n

¼ 2�ðR�HÞ=nmt þ �ðVÞ1=n: (14)

If R � H, then it follows that mt ! 1. By (10), this proves

item (1) in the theorem.

Assume now that R 9 H. We can easily solve the forced

linear recursive inequality (14) to obtain

mt 
 �ðVÞ1=n

1 � 2�ðR�HÞ=n
þ m0 � �ðVÞ1=n

1 � 2�ðR�HÞ=n

 !
2�ðR�HÞt=n:

(15)

Letting t ! 1 in (15), we immediately obtain (8). h

Remarks: Notice that the bounds above are also lower

bounds of the cost J � limt!1 sup kxtk defined in (7). The

first part of the theorem states that any coder-controller

which yields uniformly bounded worst case states must

operate at a data rate R which strictly exceeds the entropy
rate H of the plant. In other words, information must be

transported as fast as the plant generates it, or else

instability occurs. As it turns out, it is possible to attain

closed-loop stability at any data rate R 9 H, i.e., the bound

R 9 H is in fact tight. This is sometimes known as the data-
rate theorem, and has been shown to apply, under different

notions of stability, to linear plants that are deterministic

[5], [34], [59] and stochastic [60]. In Section II-B, we
describe how to construct a stabilizing coder-controller at

any rate R 9 H, for the special case of a scalar plant.

The second part of the result above indicates that for

any coder-controller, the cost increases as the noise

uncertainty volume �ðVÞ increases. Furthermore, as the

data rate is reduced to the critical value H, the cost must

always become unbounded, implying that a data rate which

is too low affects performance significantly, regardless of
the coding and control scheme in use. This was also

established in a mean-square setting with unbounded non-

Gaussian noise in [60].

A major deficiency of (8) is that it is independent of the

channel propagation delay d. As performance should

naturally deteriorate as d increases, this bound clearly

cannot be tight. However, a better one can be obtained in a

few more steps, using the same volume analysis ideas.

Proposition 1 (Universal Bound in Terms of Rate and
Delay): Let any coder-controller (5), (6) with data rate R
(4), and channel propagation delay d, be applied to the

noisy linear system (1) with intrinsic entropy rate H (3). If

R 9 H 9 0, then

lim
t!1

sup kxtk


 ��1=n 2Hd=n

1 � 2�ðR�HÞ=n
þ 2Hd=n � 1

2H=n � 1

� �
�ðVÞ1=n (16)

where � is the volume of the n-dimensional sphere with

unit radius, and �ðVÞ is the Lebesgue measure of the

process noise set.
Proof: Looking d sample intervals ahead, (10) can be

replaced by

�1=nltþd 
� fxtþdgð Þ
¼� fAdxt þ rt þ ztg
� �

; 8t 
 0 (17)

where rt :¼
Xtþd�1

j¼t

Atþd�1�jB�j fsigj�d
i¼0

� 	
;

zt :¼
Xtþd�1

j¼t

Atþd�1�jvj: (18)

Observe that with the coder-controller fixed, rt and xt are

functions of the past noise terms and initial condition,

whereas zt is determined by only the present and future

process noise vt; . . . ; vtþd�1. In terms of set addition, we

thus have

fAdxt þrt þztg ¼ fAdxt þrtgþfztg

¼ Adxt þrt

� �
þ
Xtþd�1

j¼t

fAtþd�1�jvjg: (19)
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From (17) and (19), applying the Brunn–Minkowski

inequality (12), we obtain

�1=nltþd 
� fAdxt þ rtg
� �1=n

þ
Xtþd�1

j¼t

� fAtþd�1�jvjg
� �1=n

;


� fAdxt þ rtg
� �1=n

þ
Xtþd�1

j¼t

jdet Ajðtþd�1�jÞ=n�ðVÞ1=n;

8t 
 0: (20)

As additional restrictions on a set cannot increase its size

� fAdxt þrtg
� �


� Adxt þrt : fsjgt
j¼0 ¼ fcjgt

j¼0

n o� 	
;

¼� Adxt : fsjgt
j¼0 ¼ fcjgt

j¼0

n o� 	
;

8c0; . . . ; ct

by the translation-invariance of Lebesgue measure, since rt

is constant given the given symbols fsjgt�1
j¼0. Hence

�fAdxt þ rtg 
 max
c0;...;ct

� Adxt : fsjgt
j¼0 ¼ fcjgt

j¼0

n o� 	
;

¼ jdet Ajd
max

c0;...;ct

� xt :fsjgt
j¼0 ¼fcjgt

j¼0

n o� 	
� jdet Ajdmn

t :

Substituting this into (20), and simplifying, we obtain

�1=nltþd 
 jdet Ajd=nmt þ jdet Ajd=n � 1

jdet Aj1=n � 1
�ðVÞ1=n; 8t 
 0:

By taking inferior limits, and substituting the second

inequality of (8) into the RHS, we obtain (16). h

Remarks: The bound (16) provides a method for com-

paring the relative impacts of delay, data rate, open-loop

instability, and process noise on steady-state control

performance. The formula states that for a fixed
data rate R 9 H the steady-state norm must always

grow at least like 2Hd=n with increasing d, and for

fixed delay, like 1=ð1 � 2�ðR�HÞ=nÞ with decreasing

R. However, the effects of d and R do not separate

out in a simple additive or multiplicative way, and

with increasing delay the performance deteriora-

tion due to a low data rate becomes more severe. A

universal bound growing exponentially in delay d
was also derived in [11], for analog channels.

If H ¼ 0 then the arguments used in the preceding proof

do not hold. However, we can easily obtain in this case

lim
t!1

sup kxtk 
 ��1=n 1

1 � 2�R=n
þ d

� �
�ðVÞ1=n

(21)

which is just the limiting value of the lower bound (16) as

H ! 0. In this case, the individual effects of data rate and

delay on performance do separate out additively.

We remark briefly that the volume-based techniques

used to derive (16) also yield universal lower bounds on

worst-case sum-like costs, and similar ideas can also be

used in mean-square formulations with stochastic noise. In
some applications, it may be desirable to allow the coding

alphabet size to vary over time in a predetermined way. It

can be shown that (16) still holds in this case, provided

that R is taken to be the long-term average data rate.

Observe that in the limit R ! 1, corresponding to the

classical situation without communication constraints,

(16) becomes

lim
t!1

sup kxtk 
 ��1=n 2Hðdþ1Þ=n � 1

2H=n � 1
�ðVÞ1=n: (22)

As no assumptions but causality were made on the control

law, this lower bound holds for any possibly nonlinear and

time-varying controller with unconstrained data rate.
Finally, note that in the special case of a scalar system

with dynamical parameter jaj 9 1, we have n ¼ 1 and

� ¼ 2, and so

lim
t!1

sup jxtj 
 jajd

1 � jaj=M
þ jajd � 1

jaj � 1

" #
�ðVÞ

2

� 2Hd

1�2�ðR�HÞþ
2Hd�1

2H �1

� �
�ðVÞ

2
: (23)

In the next section, we will construct a coding and control
scheme for scalar systems which actually achieves this

lower bound. In other words, the RHS of (23) is in fact the

optimal asymptotic worst case state magnitude.

The effects of d and R do not
separate out in a simple way,
and with increasing delay the

performance deterioration
due to a low data rate
becomes more severe.
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B. Tightness of Bounds
A natural question to ask is whether the universal

lower bounds on data rate and performance obtained in

Section II-A are tight, i.e., whether it is possible to

construct a coder-controller with data rate and/or cost

arbitrarily close to them. The tightness of the errorless data

rate bound R 9 H has been established in numerous articles

for linear plants with bounded disturbances [34], [77],

stochastic disturbances [60], and no disturbances [34]. The
essential steps are to 1) transform the plant into real Jordan

form, so that all the open-loop dynamical modes of the

plant are decoupled and 2) allocate the available data rate

among the unstable modes so that each mode receives an

average data rate which is slightly larger than its intrinsic

entropy rate. We refer the reader to the references above

for details. It is important to note that although we have

permitted the coder and controller to have possibly infinite
memory here, the actual construction of a stabilizing coder-

controller typically only requires a finite-dimensional re-

cursive structure. In addition, the channel data rate must be

defined in a time-average sense for rates arbitrarily close to

H to be attainable in general.

On the other hand, the tightness of the state norm

bound (16) is difficult to confirm for state dimensions

greater than 1, and geometric considerations suggest that it
is not tight. However, for scalar fully-observed plants, the

bound is in fact attainable, and we construct the optimal

coder-controller below.

Assuming that M 9 jaj, suppose that just before time t
the coder can construct, on the basis of the past symbols

s0; . . . ; st�1, an interval X t of some length 2lt containing

the state xt. Note that this interval will generally not be

centered at the origin. At time t, the coder partitions X t

into M equal subintervals, and transmits the index of the

one (call it I t) which contains xt.

From the dynamics of the plant, xtþ1 must then lie in

the interval

X tþ1 ¼ aI t þ but þ fvtg

using set addition. As the coder also knows ut ¼ �tðst�d;
. . . ; s0Þ, it can calculate the new interval. Observing that
the length of I t is 2lt=M, that fvtg has length �ðVÞ, and

that ut has the effect of a simple translation, it follows that

the half-length of X tþ1 satisfies

ltþ1 ¼ jaj
M

lt þ �ðVÞ
2

; 8t 
 0:

) lim
t!1

lt ¼ �ðVÞ
2ð1 � jaj=MÞ : (24)

At the other end of the channel, just after time t the

controller would have received s0; . . . ; st�d. Using the same

interval update equations as the coder, it can determine
the interval X t�dþ1 containing xt�dþ1. From the dynamics,

it then knows that

xtþ1 2 J tþ1 :¼ adX t�dþ1 þ b
Xt

j¼t�dþ1

at�juj þ
Xt

j¼t�dþ1

fat�jvjg

(25)

and calculates ut such that J tþ1 is centered on the origin.

Denoting the midpoint of X t�dþ1 by x̂t�dþ1, and observing

that the noise sets fvjg are symmetrical about the origin,

this means that the control at time t is given by

ut ¼ �adx̂t�dþ1=b �
Xt�1

j¼t�dþ1

at�juj:

From (25), the half-length of J tþ1 3 xtþ1 is readily seen

to be

jajdlt�dþ1þ
Xt

j¼t�dþ1

jajt�j �ðVÞ
2

¼jajdlt�dþ1 þjajd � 1

jaj � 1

�ðVÞ
2

:

As J tþ1 is centered on the origin, we immediately obtain

sup jxtþ1j � jajdlt�dþ1 þ jajd � 1

jaj � 1

�ðVÞ
2

; 8t 
 d � 1:

As a consequence, using (24)

J ¼ lim
t!1

sup jxtþ1j�
jajd

1�jaj=M
þjajd �1

jaj�1

" #
�ðVÞ

2
:

This scheme thus achieves the universal lower bound (23),

and is globally optimal.

III . STRUCTURAL RESULTS FOR
STOCHASTIC PLANTS

In this section we discuss what is known about the struc-

ture of coding and control schemes for stochastic linear

plants, i.e., if the initial condition and additive distur-

bances entering the linear plant (1) are treated not as

bounded unknowns, but rather as realizations of random

vectors with infinite-support distributions. Though the
essential nature of the problem does not change, there

are nonetheless some significant differences, particularly
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in regard to the structure of the coding and control
scheme.

Beginning with the good news in Section III-A, the

advantage of the stochastic viewpoint is that certainty

equivalence and a separation-like property apply if the cost

is quadratic. In other words, the joint coding and control

optimization problem can be solved by encoding the plant

states so as to minimize a certain distortion metric D, and

then using the decoded estimate in a certainty equivalent
control law. If the plant is partially observed with Gaussian

noise, then the optimal encoder will act instead on the

conditional mean state given the plant outputs. However,

complete separation between the coding and control

problems is not attained, since the distortion metric D
depends on the control input matrix as well as the plant

dynamical matrix.

In Section III-B we present the bad news: if a linear
plant has at least one strictly unstable mode and either the

initial condition or process noise distribution has infinite

support, then no time-invariant coding and control law

with a finite-valued internal state can stabilize the plant.

This means that simple and common coding schemes, such

as memoryless quantization and differential pulse code
modulation, cannot be considered for infinite-horizon

stochastic control problems. Instead, we are forced to
consider coder-controllers with continuous-valued internal

states, similar to the zooming quantizers of [12]. In

contrast, if the disturbances were modeled as bounded

unknowns then a memoryless quantizer with sufficiently

large range can always stabilize the plant.

Throughout this section, we assume that the linear

plant takes the form (1), but with fully observed

states yt ¼ xt, and where the initial condition x0

and additive disturbances v0; v1; . . . are realiza-

tions of mutually independent random variables

X0; V0; V1; . . . with distributions possessing possi-

bly noncompact support. Additional assumptions

relevant to each subsection are introduced as

necessary.

A. Certainty Equivalence and
Quasi-Separation

In the classical situation without communication

constraints, it is well known that if the process and

observation noise in the system are independent processes,

and the cost is quadratic in state and control, then both

certainty equivalence and the separation principle hold (see,

e.g., [8, ch. 5]). In other words, the solution is obtained by

1) filtering the plant outputs to generate the conditional
mean of the current state given past and present

measurements and past controls, and then 2) using this

conditional mean in the optimal control law which would

apply if the plant were fully observed (certainty equiva-

lence). The first step is equivalent to minimizing the mean

square state estimation error conditioned on past and

present measurements and past controls. By the linearity

of the plant, this conditional mean square error is
independent of the control policy used, and hence the

optimal filtering law will not depend on the control law or

the input matrix B, apart from the control term added at

each time step. Hence, it may be assumed that these

controls are in fact zero. In the second step, it is clear that

the optimal gains do not depend on the solution to the

filtering problem or on the output equation, since these

gains are derived assuming full state observation. Thus, the
classical optimization decomposes into two separate

subproblems: an optimal filter problem for the uncon-

trolled version of the plant, and an optimal control

problem assuming full state observations.

We explore here the extent to which these useful

properties hold if the measurements are encoded and

transmitted over an errorless digital channel to the actu-

ator. In general, the encoder and decoder introduce non-
linearities into the feedback path that invalidate certainty

equivalence and the separation principle. However, we

show that for recursive encoders that subtract out the

effect of past controls prior to coding, certainty equiva-

lence still holds. Furthermore, there is no potential loss of

optimality in restricting the encoder to this form. The

design of the optimal encoder then reduces to minimizing

a certain distortion metric. This metric depends on the
input matrix, so the strong separation between estimation

and control of the classical case no longer applies. Instead,

we have an optimal control problem nested within an

optimal estimation problem. The early articles [27], [28],

[40] presented similar results for memoryless quantizers

but are problematic; see [49].4 In [15], analogous results

were derived for quantizers with a differential form, but the

global optimality of this structure was not considered.

Similarly, a separation principle was also derived in [10]

For recursive encoders that
subtract out the effect of past
controls prior to coding, certainty
equivalence still holds.

4In [27] and [40], it is assumed that the errors yielded by the
memoryless quantizer are independent of past controls, which is generally
incorrect. In [27], there is also confusion about the information set
available to the controller, and an incorrect assertion that the state
conditioned on past symbols is Gaussian. In [28], it is claimed that the
optimal encoder is obtained by minimizing at each time step the current
weighted mean square quantization error, conditioned on past quantizer
outputs. The optimality of this greedy algorithm is doubtful, since the
current quantizer output will generally affect the conditional quantizer
error at future times, but the dynamic programming argument is only
sketched for the terminal time.
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for a class of encoders that quantized the innovations
directly.

More recently, certainty equivalence and separation

were discussed in [79] for fully observed plants controlled

via general, possibly noisy feedback communication

channels. Though the results are correct, there is a small

but somewhat crucial gap in the proof.5 In what follows,

we build on the ideas from [79] and complete the proof of

certainty equivalence and quasi-separation for fully ob-
served linear stochastic systems that are regulated via

noiseless digital feedback channels.

Let the cost of a given coder-controller ð�; �Þ ¼
ðf�tgt 
 0; f�tgt 
 0Þ 2 C (5), (6) on a finite time interval

t 2 ½0; . . . ; T� be given by the expected quadratic criterion

J2 :¼ E X0
Tþ1QTþ1XTþ1

� �
þ
XT

t¼0

E X0
tQtXt þ U0

tRtUt

� �
(26)

where QTþ1; . . .Q0 
 0; RT; . . . R0 9 0 are specified weight

matrices that are respectively positive semidefinite and

positive definite. Let

	�
t fsigt�d�1

i¼0

� 	
:¼
Xt�1

j¼0

At�1�jB�j fskgj�d
k¼0

� 	
(27)

i.e., the accumulated effect of past controls on the state xt,

and consider the class �C of causal coder-controllers that

subtract this out prior to coding

st ¼ �0
t xi � 	�

i fsjgi�d�1
j¼0

� 	n ot

i¼0
; fsigt�1

i¼0

� 	
(28)

ut ¼ �t fsigt�d
i¼0

� 	
: (29)

It is trivial that any coder-controller in �C is also in C.
Furthermore, any coder-controller in C is also in �C, since

we can write

st ¼ �t fxigt
i¼0; fsigt�1

i¼0

� �
¼ �t xi � 	�

i fsjgi�d�1
j¼0

� 	h in�
þ 	�

i fsjgi�d�1
j¼0

� 	ot

i¼0
; fsigt�1

i¼0

	
� �0

t xi � 	�
i fsjgi�d�1

j¼0

� 	n ot

i¼0
; fsigt�1

i¼0

� 	
:

Thus, �C ¼ C, and so without loss of generality we may

assume that the coding and control equations are given by

(28) and (29). This new parametrization of the coder-

controller pairs is illustrated in Fig. 2. In effect, we have

changed the global optimization coordinates from ð�; �Þ to

ð�0; �Þ.6 The reason for doing so is given in the following

lemma.

Lemma 1: Let the coder-controller (28), (29) be applied

to the fully observed stochastic linear plant (1). Then the

statistics of the symbol sequence fStgt
0 are independent

of the controller �.

Proof: Define

�Xt :¼ Xt � 	�
t fSjgt�d�1

j¼0

� 	
: (30)

It is straightforward to establish that

�xt ¼ Atx0 þ
Xt�1

j¼0

At�1�jvj (31)

i.e., f�xtgt
0 is the state trajectory if no controls were

applied. Evidently, the statistics of the f�Xtg process

are completely independent of the choice of coder-

controller. As st ¼ �0
tð�xt; fsigt�1

i¼0Þ, it follows that for fixed

�0
0; �

0
1; . . . , the symbols transmitted do not depend on

the controller �. h
We are now in a position to state the main result of this

section. Its first part states that certainty equivalence holds
5Namely, an auxiliary fully observed linear system with uncorrelated

process noise is constructed, and it is asserted that the optimal controls for
this auxiliary system are still given by the usual, linear law. This claim also
occurs elsewhere in the literature, but simple counterexamples can be
constructed for horizon-1 scalar plants.

Fig. 2. Scheme representing the new parametrization of the

coder-controller.

6This cannot be done if the memory of the encoder is finite, nor if we
only seek to minimize over � with � fixed.
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if the effect of past controls is removed prior to coding, as
above. The second part states that this structural

restriction does not sacrifice global optimality, and that a

globally optimal coder-controller ð�; �Þ can be constructed

by finding an encoder �0 for the uncontrolled process (31)

which minimizes a certain quadratic distortion criterion,

and then applying certainty equivalent controls. As this

criterion depends on the control input matrix B, the strong

separation of classical linear stochastic control does not
apply, although keeping the mean square coding errors

small remains the optimization objective.

Theorem 2 (Certainty Equivalence and Quasi-Separation):
Let any coder-controller be applied to the fully observed

stochastic linear plant (1) under the horizon-T mean

quadratic cost J2 (26). Without loss of generality, represent

the coder-controller in the ð�0; �Þ form (28), (29). Then,
for fixed mappings �0

0; �
0
1; . . . , the optimal control law is

certainty equivalent

Ut ¼ �!
t ðSt�d; . . . S0Þ :¼ �LtE½XtjSt�d; . . . ; S0� (32)

where St�d; . . . ; S0 are the symbols received by the

controller up to time t, and L0; . . . ; LT are the classical

optimal gain matrices, defined by the downward Riccati

recursion

Pt ¼ A0Ptþ1 I � BðB0Ptþ1B þ RÞ�1B0Ptþ1

� �
A

þ Qt; 0 � t � T; PTþ1 ¼ QTþ1 (33)

Lt ¼ ðB0Ptþ1B þ RtÞ�1B0Ptþ1A (34)

(see, e.g., [8, ch. 4]).

Furthermore, the global smallest cost over all coder-

controllers ð�; �Þ (5), (6) decomposes as

inf
�;�

J2 ¼ E X0
0P0X0

� �
þ inf

�0
0;�

0
1;...

D

where D is the controller-independent distortion criterion

D :¼E
XTþ1

t¼0

~X
0
tQt ~Xt

"

þ
XT

t¼0

E ~Xtþ1jfSigtþ1�d
i¼0

h i
�E ~Xtþ1jfSigt�d

i¼0

h i� 	0

� Ptþ1 E ~Xtþ1jfSigtþ1�d
i¼0

h i�

�E ~Xtþ1jfSigt�d
i¼0

h i	#
(35)

and where ~Xt :¼ �Xt � E½�XtjfSigt�d
i¼0� is the conditional cod-

ing error for the uncontrolled process f�Xgt
0 (31).

Proof: As the classes C and �C are identical by the

discussion following (27), we may represent the coder-

controller in the ð�0; �Þ form (28), (29), without loss of

any generality. Letting X̂t :¼ E½XtjSt�d; . . . ; S0�, it is trivial

to show by standard arguments that

E X0
tQtXtjSt�d; . . . ; S0

� �
¼ E ðXt � X̂tÞ0QtðXt � X̂tÞjSt�d; . . . ; S0

� �
þ X̂

0
tQtX̂t:

Averaging over the received symbols and substituting into
(26), we obtain

J2 :¼ E X̂
0
Tþ1QTþ1X̂Tþ1

h i

þ
XT

t¼0

E X̂
0
tQtX̂t þ U0

tRtUt

h i

þ
XTþ1

t¼0

E ðXt � X̂tÞ0QtðXt � X̂tÞ
� �

: (36)

Looking at the second sum, observe that since

	�
t ðfSjgt�d�1

j¼0 Þ is fully determined by the symbols

S0; . . . ; St�d�1, we can write

Xt � X̂t � Xt � E½XtjSt�d; . . . ; S0�;

¼ Xt � 	�
t fSjgt�d�1

j¼0

� 	

� E Xt � 	�
t fSjgt�d�1

j¼0

� 	���St�d; . . . ; S0

h i
;

� �Xt � E½�XtjSt�d; . . . ; S0� � ~Xt: (37)

From (31) and Lemma 1, the statistics of f�Xtgt
0 and

fStgt
0 are independent of the controller �. By (37), so too

is the process fXt � X̂tgt
0, and thus the last sum in (36)

may be ignored when optimizing over �. That is,

inf
�

J2 ¼ inf
�

J0
2

� �
þ
XTþ1

t¼0

E ~X
0
tQt ~Xt

h i

where

J0
2 :¼ E X̂

0
Tþ1QTþ1X̂Tþ1

h i
þ
XT

t¼0

E X̂
0
tQX̂t þ U0

tRUt

h i
: (38)
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Now, define Zt :¼ E½Xtþ1jStþ1�d; . . . ; S0� � E½Xtþ1jSt�d;
. . . ; S0� and observe that

X̂tþ1 � E½Xtþ1jSt�d; . . . ; S0� þ Zt

¼ E½AXt þ BUt þ VtjSt�d; . . . ; S0� þ Zt

¼ AX̂t þ BUt þ Zt (39)

since Ut is fully determined by St�d; . . . ; S0, and Vt is

independent of St; . . . S0. Furthermore

Zt ¼ E Xtþ1�	�
tþ1 fSjgt�d

j¼0

� 	
jStþ1�d; . . . ; S0�

h
� E½Xtþ1 � 	�

tþ1 fSjgt�d
j¼0

� 	
jSt�d; . . . ; S0�;

� E½�Xtþ1jStþ1�d; . . . ; S0��E½�Xtþ1jSt�d; . . . ; S0�: (40)

By virtue of (31) and Lemma 1, fZtgt
0 is independent of

the controller �. Thus, for fixed �0, optimizing over the
controller reduces to minimizing the expected quadratic

cost (38) for the fully observed auxiliary system (39).

However, although fZtgt 
 0 is uncorrelated, it is not

independent. Consequently, the standard solution from

optimal stochastic control cannot be directly applied to the

auxiliary system. Nonetheless, there is sufficient statistical

structure in Zt to permit the classical argument to go

through, with some care.
To show this, we use a completion-of-squares tech-

nique. Let PTþ1 :¼ QTþ1 and let PT; . . . ; P0 
 0 be arbitrary

positive semidefinite matrices. We have

J0
2 � E X0

0P0X0

� �
¼
XT

t¼0

E X̂
0
tQtX̂t þ U0

tRtUt

h
þX̂0

tþ1Ptþ1X̂tþ1 � X̂0
tPtX̂t

�
;

¼
XT

t¼0

E X̂
0
tðQt � PtÞX̂t þ U0

tRtUt

h
þðAX̂t þ BUtÞ0Ptþ1ðAX̂t þ BUtÞ

�
þ 2E Z0

tPtþ1ðAX̂t þ BUtÞ
� �

þ E Z0
tPtþ1Zt

� �
: (41)

Looking at the second expectation on the RHS, observe

that AX̂t þ BUt is completely determined by the symbols

St�d; . . . S0, since X̂t � E½XtjSt�d; . . . ; S0� and Ut ¼ �tðSt�d;
. . . ; S0Þ. Thus

E Z0
tPtþ1ðAX̂t þ BUtÞjSt�d; . . . S0

� �
¼ E½ZtjSt�d; . . . S0�0Ptþ1ðAX̂t þ BUtÞ: (42)

However

E½ZtjSt�d; . . . S0�
� E E½Xtþ1jStþ1�d; . . . ; S0�jSt�d; . . . ; S0½ �

� E½Xtþ1jSt�d; . . . ; S0�;
¼ E½Xtþ1jSt�d; . . . ; S0� � E½Xtþ1jSt�d; . . . ; S0� ¼ 0:

Substituting this into (42) and taking an average over the

symbols, (41) simplifies to

J0
2 ¼E X0

0P0X0

� �
þ
XT

t¼0

E X̂
0
tðQt �PtÞX̂t þU0

tRtUt

h

þðAX̂t þBUtÞ0Ptþ1ðAX̂t þBUtÞ
�
þ
XT

t¼0

E Z0
tPtþ1Zt

� �
: (43)

As fZtgt 
 0 is independent of �, only the first sum needs be

considered when optimizing over the control policy with

fixed �0, and this sum is simply what appears in the

classical linear quadratic regulation problem. It is easy to

confirm that if PT; . . . ; P0 are defined by the standard

Riccati difference equation (33), then

J0
2 ¼ E X0

0P0X0

� �
þ
XT

t¼0

E
h

ðRt þ B0Ptþ1BÞUt þ B0Ptþ1AX̂t

� �0
:

� ðRt þ B0Ptþ1BÞ�1

� ðRt þ B0Ptþ1BÞUt þ B0Ptþ1AX̂t

� �i

þ
XT

t¼0

E Z0
tPtþ1Zt

� �
:

This is obviously minimized by the certainty equivalent

policy (32), yielding

min
�

J0
2 ¼E X0

0P0X0

� �
þ
XT

t¼0

E Z0
tPtþ1Zt

� �
:

) min
�

J2 �E X0
0P0X0

� �
þ
XT

t¼0

E Z0
tPtþ1Zt

� �

þ
XTþ1

t¼0

E ðXt � X̂tÞ0QtðXt � X̂tÞ
� �

The proof is completed by substituting (37) and (40) into

this, taking an infimum over �0, and noting that the coder-

controller classes �C and C are the same. h
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B. Instability of Finite-State Coding for Unstable
Stochastic Plants

The results of the previous section suggest that the

hardest design task is not the design of the controller,

which optimally is a certainty equivalent law, but of the

encoder, which must minimize a rather complicated

distortion metric. This observation is reinforced here,

where we explain why many simple coding and control

schemes are unable to stabilize unstable stochastic plants,
regardless of how high a data rate is used.

Assume that the control law is of the form ut ¼ Lx̂t,

where L is any gain matrix such that A þ BL is strictly

stable, and x̂t here is the controller’s reconstruction of the

current state xt of (1) given the received symbols

st�d; . . . ; s0. The simplest type of coding scheme possible

is memoryless static quantization

x̂t � qðxtÞ 2 fq1; . . . ; qMg � Rn: (44)

in which the index of the selected point qst
is transmitted

across the channel. Another option is a finite-state,
predictive quantizer (see, e.g., [31]), in which the latest

coded state estimate is stored and the prediction error is

recursively coded according to a finite-valued internal

variable 
t having values in some finite set I ,

qst
� q xt � ðA þ BLÞx̂t�1; 
tð Þ

2fq1 . . . ; qMg � Rn (45)

x̂t � ðA þ BLÞx̂t�1 þ qst
;


tþ1 � gð
t; stÞ 2 I (46)

for some function g. Examples are differential pulse code
modulation and delta modulation in speech processing.

For noise distributions with compact support, it can be

shown that either type of coder can achieve boundedness.
It may seem as if this should also hold in the case of infinite

support, since if stability has been achieved then the states

and prediction errors remain with high probability in some

bounded region, which could then be quantized without

memory. However, this circular argument fails if the plant

is strictly unstable and either the initial state or a process

noise term has infinite support in all directions.

Proposition 2: Suppose that the plant (1) has at least one

open-loop eigenvalue with magnitude strictly 9 1, and that,

for any nonzero h 2 Rn, either

P½h0X0 > x� > 0; 8x 2 R; or

9t 
 0 s:t: P½h0Vt > v� > 0; 8v 2 R: (47)

Then for any static memoryless coder (44) or finite-state
predictive quantizer (45), (46)

lim
t!1

E kXtkr½ � ¼ 1;8r > 0

regardless of the number M of quantization points.

Proof: See [60].

This distinguishes the stochastic, communication-

limited stabilization problem from the deterministic,

bounded disturbance version, for which either memoryless

or finite-state quantization suffice. The reason for the

difference is basically that the finite range of the quantizer

causes controller saturation. If the initial state or process
noise has infinite support, there is consequently a finite

chance that at some time t, the propagated state Axt is

beyond reach of the control signal. The unstable plant

dynamics then amplify this short-fall, causing the same

phenomenon to occur with increasing probability at

subsequent times, and inevitably leading to instability.

An obvious solution is to use an adaptive quantizer with

possibly unbounded range, thereby allowing the control
signal to Bcatch up[ with the state. One simple approach is

to use a predictive scheme with a scaling factor lt 9 0

which is recursively adjusted according to the symbols

transmitted

qst
� q

xt � ðA þ BLÞx̂t�1

lt

� �
2 fq1; . . . ; qMg � Rn:

x̂t ¼ ðA þ BLÞx̂t�1 þ ltqst
;

ltþ1 � gðlt; stÞ 9 0:

This approach is essentially that of [12], and is also the

basis of adaptive delta modulation, and related schemes in

communications (see, e.g., [69]). We refer the reader to
[60] for details on how the quantizer q and scaling factor

update function g can be constructed while maintaining

mean square stability at any average data rate R 9 H.

IV. FINITE STATE CODER AND
CONTROLLER

In the previous sections we did not assume any limitation
on the state space complexity of the coder or controller. In

applications in which large numbers of cheap sensors

and/or actuators are involved, these complexity para-

meters have to be kept as low as possible. For this reason,

in this section we will assume that the state space of the

coder and of the controller is a finite set. This leads us to

consider recursive representations of the coder and

controller.
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For simplicity we will here restrict to the scalar state
case, fully observed, with no noise and no delay. In this

case the system is described by the equation

xtþ1 ¼ axt þ ut (48)

where a 2 R, and the coder-controller will take the

following form:

st ¼ �tðxt; st�1; . . . ; s0Þ (49)

ut ¼ �tðst; st�1; . . . ; s0Þ (50)

Notice that these two equations together with (48) will
produce, from any initial state x0 2 R, a state evolution

xt 2 R, and a symbol evolution st 2 S. We recall that S is a

finite set of cardinality M. Let S! be the language

generated by the alphabet S and let L $ S! be the

language constituted by the words associated with the

possible symbol evolutions s0s1 % % %.
Consider the following equivalence relation & on L

s0
0 % % % s0

t�1 & s00
0 % % % s00

t�1

m
�tþn x; stþn�1; . . . ; st; s0

t�1; . . . ; s0
0

� �
¼ �tþn x; stþn�1; . . . ; st; s00

t�1; . . . ; s00
0

� �
�tþn stþn�1; . . . ; st; s0

t�1; . . . ; s0
0

� �
¼ �tþn stþn�1; . . . ; st; s00

t�1; . . . ; s00
0

� �
8n 2 N; x 2 R; st; . . . ; stþn�1 2 S

Notice that, if s0
0 % % % s0

t�1 & s00
0 % % % s00

t�1, then s0
0 % % % s0

t�1st % % %
stþn�1 & s00

0 % % % s00
t�1st % % % stþn�1 for all n 2 N and st; . . . ;

stþn�1 2 S. Let � :¼ L= &. Then we can define the maps:

• Qt : � � R ! S;

• Ft : � � S ! �;

• Kt : � � S ! R;
such that, given �t 2 � and xt 2 R, then for any

representative s0 % % % st�1 on �t in L we have that

Qtð�t; xtÞ :¼ �tðxt; st�1; . . . ; s0Þ

and, letting st :¼ Qtð�t; xtÞ and �tþ1 the equivalence class in

� containing s0 % % % st�1st

Ftð�t; stÞ :¼ �tþ1

Ktð�t; stÞ :¼ �tðst; st�1; . . . ; s0Þ:

It can be seen that these are well-defined functions and
that system described by (49) and (50) can be described

equivalently by the equations

�tþ1 ¼ Ftð�t; stÞ
st ¼ Qtð�t; xtÞ
ut ¼ Ktð�t; stÞ

8<
: : (51)

The set � is called the coder-controller state space, and the

previous equations provide a state space representation of

the coder-controller. More precisely, the state represen-

tation of the coder is

�tþ1 ¼ Ft �t;Qtð�t; xtÞð Þ
st ¼ Qtð�t; xtÞ

�
(52)

while the the state representation of the controller is

�tþ1 ¼ Ftð�t; stÞ
ut ¼ Ktð�t; stÞ

�
: (53)

Notice the recursive structure of these representations

which are particularly useful for implementation. Moreover,

we can interpret the cardinality of � as a computational

complexity parameter. In this section we will try to

understand what restrictions are imposed by limiting to

coder-controllers that are time-invariant with finite state
space, namely which are described by the equations

�tþ1 ¼ Fð�t; stÞ
st ¼ Qð�t; xtÞ
ut ¼ Kð�t; stÞ

8><
>: (54)

where � has cardinality N. We assume that the coder-

controller initial state �0 is initialized to a known fixed state
��. This implies that any initial state x0 2 R of (48) will

produce evolutions ðxt; �tÞ uniquely determined by x0.

Remarks: Notice that the case N ¼ 1 corresponds to the

memoryless situation in which the coder is described by the

function st ¼ QðxtÞ and the controller by the function

ut ¼ KðstÞ so that the control law will be described by the

quantized feedback ut ¼ kðxtÞ where the function k ¼ K ( Q
is quantized and can take only M different values.

Notice moreover that in what we have done so far we
assumed that the coder and the controller have the same

state spaces. This is a restriction, since we can imagine

situations where, for instance, the coder is memoryless and

the controller has memory, and vice versa. The case in
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which the coder is memoryless and the controller has
memory describes situations in which there is more

computational capability at the actuator than at the sensor

(see [20]), and the other way around for the case in which

the coder has memory while the controller is memoryless.

Example: Zooming in/Zooming Out: (See [12]) Consider

the system (48) in which we assume for simplicity that a is

an integer 
 2. Fix

S ¼ f0; 1; . . . ; a � 1g2 [ fAlarmg

where Alarm is a supplementary alarm symbol. In this way

we have a set S with M ¼ a2 þ 1 symbols. Assume,
initially, that � ¼ Z and that x0 
 0. Define

Qð0; xÞ :¼ ð
1; 
2Þ; if x 2 ½0; 1½
Alarm; otherwise

�

where 
i 2 f0; 1; . . . ; a � 1g provide the a-ry expression of

x, namely x ¼
P

i2Z 
ia
�i. Let

Qð�; xÞ :¼ Qð0; a��xÞ

Moreover, let

Kð0; sÞ :¼ �
1 � 
2a�1; if s 6¼ Alarm

0; otherwise

�

and

Kð�; sÞ :¼ a�Kð0; sÞ:

Finally, let

Fð�; sÞ :¼
� � 1 if s 6¼ Alarm zooming in phase

� þ 2 otherwise zooming out phase

�

It can be seen that this technique yields convergence to

zero [12], [44], at the price of requiring a coder-controller

with infinite memory N ¼ 1. However, if we modify the

map Fð%; %Þ as follows:

Fð�; sÞ :¼
maxf� � 1;�ng; if s 6¼ Alarm

� þ 2; otherwise

�

and we know that the initial state x0 2 ½0; am½, m 
 0, then
it can be shown that the state will grow utmost till

xm 2 ½0; a2m½ during the zooming out phase and then it will

contract during the zooming in phase till xt 2 ½0; a�n½ for

all t 
 3m þ n.

In theprevious example it is clear that limitation in the

memory is paid with the impossibility of asymptotic

stability. This is always true.

Proposition 3: Assume that jaj 9 1 and assume we are

using a coder-controller as (5), (6). Assume finally that

the controller can take only finitely many input values.

Then there is an at most countable number of initial con-

ditions x0 corresponding to a state evolution xt converging

to zero.

Proof: Assume that the controller can take the values

�u1; . . . ; �uk. Observe first that, since

xt ¼ atx0 þ
Xt�1

j¼0

at�1�juj

and since uj can take only finitely many values, then there

exists only an at most countable number of initial

conditions x0 which correspond to a state evolution xt

such that x�t ¼ 0 for some �t. Suppose now that x0 does not

have this property. We want to show that the
corresponding state evolution xt does not converge to

zero. Assume by contradiction that xt ! 0. Let

m :¼ minfjuij : ui 6¼ 0; i ¼ 1; . . . ; kg 9 0

and take � G ð1 þ jajÞ�1m. Then there is a T such that

jxtj � � for all t 
 T. Consider now the input sequence

uT; uTþ1; . . .. As xT 6¼ 0, this input sequence cannot be

identically zero. Let � 
 T be such that u� 6¼ 0. Then

m � ju� j ¼ jx�þ1 � ax� j �
jx�þ1j þ jax� j � 1 þ jajð Þ� G m

which is a contradiction. h
The previous result shows that asymptotic stability

cannot be achieved by a finite memory coder-controller

scheme: it must be replaced by some sort of practical

stability. More precisely, given two nested intervals J $ I,
it is only possible to find a coder-controller such that, for

all x0 2 I, the evolution it produces will be such that xt 2 J
for all t 
 T. We define the entrance time as

Tðx0; JÞ :¼ minft 2 Njxs 2 J 8s 
 tg: (55)
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It makes sense to measure the performance of the coder-
controller by the two indices

T ¼ TðI; JÞ :¼ E Tðx0; JÞ½ � (56)

C ¼ CðI; JÞ :¼ 1

P½J� (57)

where P½%� is the uniform probability measure over I, and

E½%� is the expectation with respect this probability

measure. The index C is called the contraction rate, and

describes the steady-state performance of the control

strategy, while T is called the expected time, and describes

its transient performance.
The previous definition of entrance time is based on

the perfect knowledge of the state available at the coder.

There is another possible definition of entrance time,

based only on the partial knowledge of the state available

at the decoder. Indeed the decoder knows at time t only

the sequence of the symbols s0; s1; . . . ; st from which it can

produce the sequence of states �0; �1; . . . ; �t. For any finite

word s0s1 % % % st 2 S!, let

Iðs0s1 % % % stÞ :
¼ fx0 2 Ijx0 produces the sequence s0; s1; . . . ; stg; (58)

and given an infinite sequence s0; s1; . . ., let

TDðs0; s1; . . . ; JÞ :¼ min t j any x0f
2 Iðs0s1 % % % st�1Þ produces xt 2 Jg (59)

If the set on the right-hand side (RHS) is empty, we define
TDðs0; s1; . . . ; JÞ :¼ þ1. In words, TDðs0; s1; . . . ; JÞ is the

minimum time t in which the decoder is sure, from the

symbols till time t � 1, that the initial state was such that

the state xt achieved the target set. Define finally the

decoder expected entrance time as

TD ¼ TDðI; JÞ :¼ E TDðs0; s1; . . . ; JÞ½ � (60)

It is easy to see that, if x0 produces the sequence s0; s1; . . .,
then Tðx0; JÞ � TDðs0; s1; . . . ; JÞ. This implies

T � TD

For any � 2 � and s 2 S, let

Ið�; sÞ :¼ fx 2 RjQð�; xÞ ¼ sg;

and define Ið�Þ :¼ fIð�; sÞjs 2 Sg, which constitutes a

partition of R. We know that the cardinality of each of

these partitions is M. If for any � 2 �, the target interval
J is the union of quantization regions Ið�; sÞ, then we

have that

TD � T þ 1 (61)

In the sequel, we will present several bounds which

will highlight the trade-off relation between the para-
meters influencing the control design. Let L be the

sublanguage of S! obtained as follows

L :¼ s0s1 % % % st�1 2 S!j 9x0 generatingf
s0; s1; . . . and t ¼ TDðs0; s1; . . . ; JÞg

The language L is prefix (the verification of this fact, and

the definition of a prefix language can be found in the

Appendix). Moreover we have that

TDðs0; s1; . . . ; JÞ ¼ lengthðwÞ

Then the decoder expected entrance time TD can be

computed as the average length of a word in L

TD ¼ E lengthðLÞ½ � ¼
X
w2L

lengthðwÞP IðwÞ½ �: (62)

Any bound on TD has necessarily have to obtained through

some approximation of the distribution probability
P½IðwÞ�. We now present a simple but fundamental

estimation of this quantity:

Lemma 2: For any word w 2 L, it holds

P IðwÞ½ � � C�1jaj�lengthðwÞ;

where C is the contraction rate (57).
Proof: Fix any w 2 L and let t :¼ lengthðwÞ. Any

x0 2 IðwÞ produces an evolution such that xt 2 J. Moreover

for all x0 2 IðwÞ we have that

xt ¼ atx0 þ u

with a u which is independent of x0. This implies that

jajt
P IðwÞ½ � � P½J� ¼ 1=C:

h
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The following performance bound is essentially based
on the work by Delvenne [21] on this topic. By Shannon’s

noiseless coding theorem we have that, since L is prefix,

then

TD ¼ E lengthðLÞ½ � 
 HðLÞ
log M

(63)

where

HðLÞ :¼ �
X
w2L

P IðwÞ½ � logP IðwÞ½ �

is the entropy of the language L.

Theorem 3: The contraction rate C (57) and decoder

entrance time TD (60) must satisfy the inequality

log C � TD log
M

jaj : (64)

Proof: It follows from Lemma 2 that

� logP IðwÞ½ � 
 lengthðwÞ log jaj þ log C:

Substituting this inequality in the definition of the entropy

of L and defining Lt to be the set of words in L of length t,
we obtain

HðLÞ ¼ �
Xþ1

t¼0

X
w2Lt

P IðwÞ½ � logP IðwÞ½ �



Xþ1

t¼0

t log jaj þ log Cð Þ
X
w2Lt

P IðwÞ½ �

¼ log C þ log jaj
Xþ1

t¼0

t
X
w2Lt

P IðwÞ½ �

¼ log C þ TD log jaj

where we used the fact that
Pþ1

t¼0 t
P

w2Lt
P½IðwÞ� coin-

cides with the expected length of the language. Putting

together the previous inequality and (63) we have the

thesis. h
The previous theorem shows that there is a trade-off

relation between the steady-state performance index C and

the transient performance index T. This is illustrated in

Fig. 3.

Observe the following facts.
• Surprising enough, the complexity parameter N,

namely the dimension of the state space of the

coder-controller, does not play a role in the tradeoff

relation between C and T.

• If we want to obtain a bound involving T instead of

TD, we need to assume that the target set J is the

union of quantization regions. Indeed, in this case

from (61) we can argue that

log C � ðT þ 1Þ log
M

jaj : (65)

Example: Optimal Coder-Controller: (See [21]) Consider

the system (48) in which we assume that a is an integer


 2. Assume that I ¼ ½0; 1�, J ¼ ½0; a�n�, and consider the
following quantized feedback strategy:

Express any real x in base a expansion

x ¼
Xþ1

i¼1


ia
i;

and set

kðxÞ ¼ �að
1a�1 þ 
na�nÞ; 8x 2 R: (66)

This is a memoryless control law with M ¼ a2 symbols

and contractipn rate C ¼ an. Note that the quantizer

region corresponding to each possible value of kðxÞ is a

Fig. 3. The region of allowed performance indices logC and T.

The first graph shows that, if we want small T (good transient

performance), we are forced to have small C (bad steady-state

performance). The second graph shows that, if we want big C

(good steady-state performance), we are forced to

have big T (bad transient performance).
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disconnected union of intervals. This control law, starting
from an initial state x0 with the base a expansion

x0 ¼
Xþ1

i¼1


ia
i

produces a state evolution xt, whose base a expansion is

given in the table at the bottom of the page. Notice that

TD ¼ n and so this example attains the bound (64).
We want to compute the expected entrance time T.

Notice that

P Tðx0; JÞ � i½ � ¼
ai�n; if i ¼ 0; 1; . . . ; n � 1

1; if i 
 n:

(

This implies that

T ¼
X
i
1

P Tðx0; JÞ 
 i½ � ¼
X
i
1

1 � P Tðx0; JÞ � i � 1½ �

¼
Xn�1

i¼0

1 � P Tðx0; JÞ � i½ � ¼ n � 1 � a�n

a � 1
:

Notice, however, that in this case J is not the union of

quantization regions and so no estimate involving T can be

argued from (64). This coder-controller can be extended

[21] so to obtain a class of optimal coder-controller pairs

with M ¼ ahþ1, TD ¼ n and C ¼ anh for all h; n 2 N.

Example: Zooming in/Zooming Out: (See [25]) Consider
the previous zooming in/zooming out example and assume

that I ¼ ½0; 1� and J ¼ ½0; a�n�. In this case we have only

zooming-in, namely �t ¼ �t for t � n � 1 and �t ¼ �n for

t 
 n. Moreover, only a2 symbols are transmitted. There-

fore, we have N ¼ n, M ¼ a2 and C ¼ an. This control,

starting from an initial state x0 which the following base a
expansion

x0 ¼
Xþ1

i¼1


ia
i

will produce a state evolution xt whose base a expansion is

given in the table at the bottom of the next page. Notice

that in this case TD ¼ n and so also this example attains the

bound (64). We want to compute the expected entrance

time T. Notice that

P Tðx0; JÞ � i½ � ¼ a2i�2nþ1; if i ¼ 0; 1; . . . ; n � 1

1; if i 
 n:

�

This implies that

T ¼
X
i
1

P Tðx0; JÞ 
 i½ � ¼
X
i
1

1 � P Tðx0; JÞ � i � 1½ �

¼
Xn�1

i¼0

1 � P Tðx0; JÞ � i½ � ¼ n � a

a2 � 1
ð1 � a�2nÞ:

0 1 2 3 % % % n � 2 n � 1 n n þ 1 n þ 2 % % %
x0 0 
1 
2 
3 % % % 
n�2 
n�1 
n 
nþ1 
nþ2 % % %
x1 0 
2 
3 
4 % % % 
n�1 
n 0 
nþ2 
nþ3 % % %
x2 0 
3 
4 
5 % % % 
n 0 0 
nþ3 
nþ4 % % %
x3 0 
4 
5 
6 % % % 0 0 0 
nþ4 
nþ5 % % %

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

xn�3 0 
n�2 
n�1 
n % % % 0 0 0 ! ! % % %
xn�2 0 
n�1 
n 0 % % % 0 0 0 ! ! % % %
xn�1 0 
n 0 0 % % % 0 0 0 ! ! % % %
xn 0 0 0 0 % % % 0 0 0 ! ! % % %

xnþ1 0 0 0 0 % % % 0 0 0 ! ! % % %

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.
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Notice however that also in this case J is not the union
of quantization regions, so no estimate on T can be argued

from (64).

V. QUANTIZERS WITH CONNECTED
QUANTIZATION REGIONS

In the previous section, we imposed no limitations on the

structure of the quantization regions, and saw that, under
certain conditions, the universal performance bound (64)

can be achieved by a control law with disconnected

quantization regions (66). However, the complexity of the

shape of these regions can in practice be a costly

parameter. Typically, the complexity and cost of analog-

to-digital (A/D) converters depends on the number of

inequalities that must be checked in order to determine

the digital output associated with a real input. This roughly
coincides with the logarithm of the number of intervals

into which the A/D converter partitions the real line, as

well as the number of different digital values. For the case

of a scalar quantizer, each quantization region may in

general be a union of several disjoint intervals associated

with the same output. In this case, the A/D complexity is

better described by the number of intervals than by the

number of different values that the output can take.
Mathematically, this is equivalent to forcing the

quantizer regions to be intervals, but dropping the con-

straint that the associated outputs be distinct. In Theorem

5 in this section, we show that this dramatically decreases

the attainable performance. As before, we first establish

universal bounds, and then present some examples.

As a first step, we need a different estimate of TD with

respect to the one suggested by Theorem 3. We start again

from the prefix language L and we introduce the se-
quence of numbers

�t ¼ w 2 LjlengthðwÞ ¼ tf gj j

namely �t is the number of words in L of length t. We

assume by convention that �0 ¼ 1. We have the following

preliminary results.

Lemma 3: Given any t 2 N, we have that

P TDðw; JÞ ¼ t½ � � C�1 �t

jajt (67)

P TDðw; JÞ 
 t½ � 
 1 � C�1
Xt�1

k¼0

�k

jajk
(68)

where C is the contraction rate C (57), and TDðw; JÞ is the

minimum decoder entrance time (59).

Proof: As w varies in L, the various subsets IðwÞ are

relatively disjoint. Hence, using Lemma 2, we easily

obtain

P TDðw; JÞ ¼ t½ � ¼ P lengthðwÞ ¼ t½ � � �tC
�1jaj�t

which proves the first assertion.

We prove now the second assertion by induction on t.
The assertion is trivial for t ¼ 1. Assume by induction that

0 1 2 3 % % % n � 2 n � 1 n n þ 1 n þ 2 % % %
x0 0 
1 
2 
3 % % % 
n�2 
n�1 
n 
nþ1 
nþ2 % % %
x1 0 0 
3 
4 % % % 
n�1 
n 
nþ1 
nþ2 
nþ3 % % %
x2 0 0 0 
5 % % % 
n 
nþ1 
nþ2 
nþ3 
nþ4 % % %
x3 0 0 0 0 % % % 
nþ1 
nþ2 
nþ3 
nþ4 
nþ5 % % %

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

xn�3 0 0 0 0 % % % 
2n�5 
2n�4 
2n�3 
2n�2 
2n�1 % % %
xn�2 0 0 0 0 % % % 0 
2n�3 
2n�2 
2n�1 
2n % % %
xn�1 0 0 0 0 % % % 0 0 
2n�1 
2n 
2nþ1 % % %

xn 0 0 0 0 % % % 0 0 0 
2nþ1 
2nþ2 % % %
xnþ1 0 0 0 0 % % % 0 0 0 
2nþ2 
2nþ3 % % %

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.
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the assertion holds for t and let us prove it for t þ 1. We can
now write

P TDðw; JÞ 
 t þ 1½ � ¼P TDðw; JÞ 
 t½ � � P TDðw; JÞ ¼ t½ �


P TDðw; JÞ 
 t½ � � C�1 �t

jajt


 1 � C�1
Xt�1

k¼0

�k

jajk
� C�1 �t

jajt

¼ 1 � C�1
Xt

k¼0

�k

jajk
:

h
From this we can obtain the following result.

Proposition 4: For any t 2 N, it holds

TD 
 t � C�1
Xt

t¼1

Xt�1

t¼0

�k

jajk
(69)

where C is the contraction rate C (57), and TD is the
decoder entrance time (60).

Proof: Immediate consequence of Lemma 3 and of

the fact that

TD ¼
Xþ1

t¼1

P TDðw; JÞ 
 t½ � 

Xt

t¼1

P TDðw; JÞ 
 t½ �:

h
If we can establish upper bounds on �t, through (69)

we can thus achieve lower bounds on TD. The following

theorem provides a bound on the growth of �t depending

on the number of quantization intervals M and the number

of states N. The proof of this theorem is very long and will

not be reported in this paper (see [26]).

Theorem 4: Assume that jaj 9 2. Then

�t

jajt � 2
Xr^t

s¼1

t � 1

s � 1

� �
r

s

� 	 s

r

� 	s
" #

MNK

t ^ MNK
e

� �t^MNK
e

8t 
 1 (70)

where r 2 f1; . . . ;MNg is independent of t, but may

depend on the specific system, while K depends only on

jaj, and where a ^ b means the minimum between a and b.

From bounds (69) and (70), we obtain a lower bound

on TD. However, this bound is very implicit. It depends on

the contraction rate C and the complexity parameters N
and M (that enter only through their product), and also on

the choice of the parameter t. Of course we would like a

simpler expression, similar to (64). The key idea to obtain

this is to study various possible regimes and choose

appropriate t in the above inequality. The next result,

whose derivation is long but straightforward, distinguishes

three different regimes. The first is when NM= log C is

sufficiently small: this in particular covers the case when
we keep N and M fixed and we let C grow. We know from

previous considerations that there are examples where TD

grows only logarithmically with respect to C. We will see

that this can not happen if the quantization regions have to

be intervals: the corresponding expected entrance time TD

in this case exhibits a superlogarithmic growth in C. The

second case is a sort of dual of the first one: it is when

TD= log C is sufficiently small. It contains the case when
TD= log C ! 0, namely the regime of sublogarithmic

growth of TD in C: this time the corresponding complexity

parameter NM exhibits a superlogarithmic growth in C.

The third situation is the logarithmic regime, which is

when both NM and TD exhibit a logarithmic growth: it is a

consequence of the first two bounds.

Theorem 5: For any contraction rate C (57) and decoder
entrance time TD (60), the following bounds hold.

1) There exist K1 9 0, �1 9 0 and C1 9 1 such that

C 
 C1 and
NM

log C
� �1¼)TD 
 K1NMC1=NM: (71)

2) There exist K2 9 0, �2 9 0 and C2 9 1 such that

C 
 C2 and
dTDe
log C

� �2¼)NM 
 K2dTDeC
1

dTDe (72)

where d%e denotes the ceiling function.

3) There exist C0 9 1 and two functions F;G :
Rþ ! Rþ which are decreasing and converging

to 0 at þ1, such that for all C 9 C0 we have that

NM

log C

 F

dTDe
log C

� �
and

dTDe
log C


 G
NM

log C

� �
: (73)

Remarks: Notice that in the case when both N and M
are assumed to be fixed, we obtain a tradeoff between the

two performance parameters C and TD. In this case, (71)

shows that TD has to grow, with respect to C, at least as
a power C1=NM. This is in sharp contrast with the loga-

rithmic growth obtained in the example presented after

Theorem 3. It is important to remark again that this

degradation of performance is due to the requirement of
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having intervals as quantization regions. Examples of
memoryless feedback quantization strategies employing a

fixed number of quantization intervals (not depending on

the contraction rate) are the chaotic stabilizers presented

Section V-D. Notice that these quantizers exhibit a growth

rate of type TD & C, hence worse than bound (71) since

NM 9 1. However, this bound can be refined in certain

cases. It is shown in [23] that for a memoryless quantized

feedback having djaje quantization intervals outside J
(which is exactly the case in the example), TD has to grow

at least linearly in C.

Item (3) of the above result shows that in order to

achieve entrance times logarithmic in C, it is necessary to

consider schemes where the number of quantization

intervals M and/or the number N of states of the quantizer

also grow at least logarithmically in C. Conversely, schemes

for which NM grows at most logarithmically in C yield
entrance times that are at least logarithmic in C. Examples

of this type of behavior are reported in Section V-C.

Let us comment more on the logarithmic regime (73).

Notice that, if we take any linear feedback ut ¼ kxt, with

k 2 R, such that ja þ kj G 1, then the closed-loop system

xtþ1 ¼ ða þ kÞxt is exponentially stable. This corresponds

to an expected entrance which grows logarithmically with

C but decreases with ja þ kj. Hence, the logarithmic
regime corresponds to a kind of exponential stability

obtainable by a quantized controller. Therefore, the bound

(73), that furnishes a quantitative tradeoff between the

two ratios TD= log C and NM= log C, can be interpreted as a

tradeoff between the rate of exponential stability associ-

ated with the quantized controller and cost in terms of the

complexity parameters N and M. The constraint provided

by (73) are illustrated in Fig. 4 which shows explicitly the
region in which the pairs ðNM= log C; TD= log CÞ can not

belong to. It can be easily shown that the functions FðxÞ
and GðxÞ which determines the boundary of this region

tend to 0 as the function fðxÞ ¼ xe1=x.

Notice finally that in order obtain faster stabilization

strategies, for instance strategies where the entrance time

TD is fixed and does not depend on C (such as the dead-beat

controller presented in Section V-B), (72) shows that the
product NM has to grow more than logarithmically in C. In

particular, in the case when TD is constant, it has to grow as

a power of C. This is in agreement with the examples.

A. Memoryless Quantized Controllers
As observed above, if the coder and the controller are

memoryless and time-invariant, then the control system

becomes

xtþ1 ¼ axt þ kðxtÞ

where k : R ! R is a piecewise constant map with at most

M levels and is called a quantized controller. Here we are

still restricting our attention to quantized controllers

whose quantization regions are intervals. Differently from

what happens without this topological restriction, there

are various ways to design a stabilizing quantized

controller each providing a different tradeoff choice

between steady-state C and transient performance TD.

First observe that the case C ¼ 1 corresponds to requiring
that the interval I ¼ J is invariant. This can be obtained by

M ¼ djaje levels.

The Perron–Frobenius Operator for Piecewise Affine Maps:
In this subsection we recall some standard results on the

ergodic theory of piecewise affine maps which is relevant

in the analysis of quantized feedback control systems as

first observed in [20].
Let kðxÞ be a quantized feedback making the interval I

invariant and let 	ðxÞ :¼ ax þ kðxÞ. This is a piecewise

affine map with fixed slope a. Assume here that jaj 9 1. Let

L1ðIÞ be the set of integrable function and L1ðIÞ the set of

bounded functions defined on I. It is a standard fact [41]

that 	 induces a linear transformation

P	 : L1ðIÞ ! L1ðIÞ

called the Perron–Frobenius operator associated with 	
which is uniquely defined by the following duality relation:

Z
I

ðg ( 	ÞðxÞfðxÞdx ¼
Z
I

gðxÞðP	fÞðxÞdx (74)

for all g 2 L1ðIÞ; f 2 L1ðIÞ. It can be shown that the

operator P	 is bounded with kP	k1 � 1, and maps

Fig. 4. The grey region in this graph represents the set to which

the pairs ðNM= logC; TD= logCÞ cannot belong.
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probability densities to probability densities. An important
interpretation of P	 is as follows. Roughly speaking, the

Perron–Frobenius operator provides a statistical descrip-

tion of the dynamics associated with the nonlinear

autonomous system xtþ1 ¼ 	ðxtÞ. More precisely, if we

see xt as a random variable defined on I with probability

density pt, then the density of xtþ1 is ptþ1 ¼ P	pt. This

implies that pt ¼ Pt
	p0, where p0 is the probability density

describing the initial condition x0.
The relevance of the Perron–Frobenius operator in our

investigations is also due to the fact that

Pf Tðx; JÞ > n½ � ¼
Z
InJ

Pn

	p0ðxÞdx

which follows by iterating (74) and by taking gðxÞ ¼
1InJðxÞ. This shows that the asymptotic properties of this
operator, and so its spectral properties, will be relevant for

our purposes.

The Perron–Frobenius operator has interesting spec-

tral properties if restricted to bounded variation probabil-

ity densities. Under some technical assumptions it can be

shown that there exists a density �pðxÞ, which is P	-

invariant, such that for any bounded variation density pðxÞ
we have that Pn

	pðxÞ converges exponentially to �pðxÞ. This
implies that the probability density describing xt will al-

ways converge to �p. This provides a nice statistical des-

cription of the asymptotic behavior of the state evolution.

Further details on the use of the invariant density and of

the Perron–Frobenius operator in the context of quantized

control can be found in [20], [24], and [25].

B. Deadbeat Quantized Controllers
This strategy is based on the simple idea of approxi-

mating through a uniform quantizer the linear deadbeat

controller. More precisely, let q : R ! R be the uniform

quantizer defined as

qðxÞ ¼ 2k þ 1 8x 2 ½2k; 2k þ 2½; k 2 Z:

Observe that jqðxÞ � xj � 1. It is easy to verify that, by the

quantized controller kðxÞ :¼ qð�axÞ we can obtain the
convergence in one step from any interval I ¼ ½�C; C� into

J ¼ ½�1; 1� with a controller with M ¼ 2djajC=2e ’ jajC
levels. So we obtain a contraction C, an expected time

T ¼ 1 with M ’ jajC levels. The closed-loop map ax þ kðxÞ
obtained in this way is illustrated in Fig. 5.

This technique can be extended to obtain multistep

deadbeat quantized controllers. In this case we obtain a

contraction C, an expected time T ¼ � with M ’ jaj�C1=�

levels [26]. This technique can be extended also to

multidimensional systems [67].

C. Logarithmic Quantized Controllers
This class of quantized controllers is the most efficient

one if we require the closed-loop system to be stable with

respect to some Lyapunov function [22]. In our scalar

example we can start from the Lyapunov function

VðxÞ ¼ x2. Then we obtain the any quantized controller
kð%Þ such that


VðxÞ ¼ V ax þ kðxÞð Þ � VðxÞ G 0

8x 2 ½�C;�1� [ ½1; C� (75)

will yield convergence from any interval I ¼ ½�C; C� into

J ¼ ½�1; 1�. Condition (75) holds true if and only if
jax þ kðxÞj G jxj and so if jax þ kðxÞj G �jxj for some

0 G � G 1. This inequality is equivalent to

��jxj � ax þ kðxÞ � �jxj (76)

and to

�ax � �jxj � kðxÞ � �ax þ �jxj: (77)

Optimal quantized controllers kðxÞ satisfying (77) are

illustrated in Fig. 6. They correspond to logarithmic

quantizers since kðxÞ can be expressed as

kðxÞ ¼ �ða � �Þ�q log�ðxÞð Þþ1

Fig. 5. Graph of the closed-loop map ax þ kðxÞ obtained from a

uniform quantizer.
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where � ¼ ða þ �Þ=ða � �Þ. So we obtain a contraction C,

an expected time T � log� C with

M ¼ jajd e þ 2
log� C

2

 !

levels. The logarithmic quantizer kðxÞ and the closed-loop
map ax þ kðxÞ are illustrated in Fig. 6.

D. Chaotic Quantized Controllers
In [24], another possible quantized controller has been

proposed. This control strategy exploits the chaotic

behavior of the state evolution inside I ¼ ½�1; 1� produced

by the feedback map k0ðxÞ :¼ qð�axÞ when we have that

jaj 
 2. In this way we have that, for almost every initial
condition x0 starting from I, the state evolution xt is main-

tained inside the interval I and is dense in this interval. For

this reason xt will visit the interval J ¼ ½�1=C; 1=C�.
Therefore, if we modify this feedback map as follows:

kðxÞ ¼ k0ðxÞ; if x 2 I n J
k1ðxÞ; if x 2 J

�
(78)

where k1ðxÞ is any quantized feedback making J invariant,

we obtain that the state will move chaotically inside I till it

will enter the interval J and there it will be entrapped.

We obtain that in this way a quantized feedback with

M ¼ 2djaje ’ 2jaj levels and contraction C. In general it is

not easy to determine the expected time. This computation
becomes quite easy in the particular cases in which each of

the two intervals ½�1;�1=C� and ½1=C; 1� composing the set

I n J can be divided into �n identical intervals of length 2=jaj
and the closed-loop map ax þ kðxÞ is affine on these

intervals and has the entire I as codomain. The graphs of

the closed-loop map ax þ kðxÞ obtained in this way is

illustrated in Fig. 7. In this case we have

�n ¼ jaj C � 1

2C

and so

M ¼ jaj C � 1

C
þ jajd e ’ 2jaj:

Fig. 7. Graph of the closed-loop map ax þ kðxÞ obtained from

the chaotic quantized feedback.

Fig. 6. Graphs of the logarithmic quantizer kðxÞ and the closed-loop

map ax þ kðxÞ compared with the bounds ax 1 �jxj and 1�jxj, for x 
 0.
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The evaluation of the expected entrance time can be done
as follows. Observe that in this case, if the density function

pt of the random variable xt is uniform on I n J, the same

holds true for density function ptþ1 of xtþ1. More precisely

it can be shown that, if ptðaÞ ¼ 
t for all a 2 I n J, then

ptþ1ðaÞ ¼ 
tþ1 ¼ 
tððC � 1Þ=CÞ for all a 2 I n J. This

implies that

ptðaÞ ¼ C � 1

C

� �t
1

2
8a 2 I n J:

Observe finally that

P Tðx0; JÞ > n½ � ¼P½xn 2 I n J� ¼
Z
InJ

pnðaÞda

¼ 2
C � 1

C

n ¼ C � 1

C

� �nþ1

and so

TðI; JÞ ¼ E Tðx0; JÞ½ � ¼
X1
n¼0

P½T > n�

¼
X1
n¼0

C � 1

C

� �nþ1

¼ C � 1:

Therefore, we obtain expected time TðI; JÞ ¼ C � 1 ’ C.
Chaotic stabilizers can also be considered for general

cases. Some preliminary results on this case have been

obtained in [24]. In [23] the following more refined result

is proved.

Theorem 6: Let a be such that jaj 9 2, I ¼ ½�1; 1� and

J ¼ ½�1=C; 1=C�. There exists an almost ðI; JÞ-stabilizing

quantized feedback k : I ! R such that

M ¼ 2 jajd e þ 1

T � KC

where K is a positive constant only depending on a.

E. Robustness in Memoryless Quantized Controllers
Discrete-time systems typically result from sampling

continuous-time systems. The synthesis of quantized

feedback maps that are robust with respect to the sampling

period 
 is proposed in [42]. As in [42] take the unstable

continuous time system

_xðtÞ ¼ 
xðtÞ � uðtÞ; 
 9 0

and assume that the feedback control law is

uðtÞ ¼ k xðk
Þð Þ; 8t 2 k
; ðk þ 1Þ
½ ½; k 2 Z

where kð%Þ is a quantized feedback map. It is well-known

that the analysis of this system can be done through the

discrete time system

xkþ1 ¼ e

xk � e

 � 1



uk

with the feedback

uk ¼ kðxkÞ:

Notice that, if kð%Þ has M levels, the data rate R involved by

this quantized feedback varies with 
 as

R ¼ log M



:

In [42], the authors propose the design of a stabilizing

quantized feedback kð%Þ which is robust with respect to

variations of the sampling period 
. More precisely, a
quantized feedback map kð%Þ is said to be regular if, by

defining

Cð
Þ :¼ 1

sup
x02½�1;1�

lim
k!1

jxkj

we have that

lim

!0

Cð
Þ ¼ 1:

This means that the contraction has to go to infinity when

the data rate goes to infinity.

Theorem 7: [42] A quantized feedback kð%Þ is regular if

and only if


x G kðxÞ � 1 if x 2 �0; 1�
�1 G kðxÞ � �
x if x 2 ½�1; 0�:

In this case we have that Cð
Þ 
 ð
=ðe

 � 1ÞÞ.

Proof: The proof can be found in [42]. We give here

only the sufficiency part. Consider the Lyapunov function
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VðxÞ :¼ jxj. First observe that, if both x 9 0 and

xþ :¼ e

x � ððe

�1Þ=
ÞkðxÞ 9 0, then


VðxÞ :¼ VðxþÞ � VðxÞ ¼ xþ � x

¼ ðe

 � 1Þ x � kðxÞ



� �
G 0:

Similarly we can prove that, if both x G 0 and xþ G 0, then


VðxÞ G 0. If instead x 9 ðe

 � 1Þ=
 and xþ G 0, then


VðxÞ :¼ �xþ � x

¼ �e

x þ e

 � 1



kðxÞ � x G

e

�1



kðxÞ � x

� e

 � 1



� x G 0:

Similarly we can prove that, if x G �ðe

 � 1Þ and xþ 9 0,

then 
VðxÞ G 0. In this way we have shown that, if

e

 � 1Gjxj � 1, then 
VðxÞ G 0. This implies that for any

initial state x0 2 ½�1; 1� we have that xt converges to the

interval ½�ðe

 � 1Þ=
; ðe

 � 1Þ=
� proving in this way

the assertion. h
The graph of a regular quantized feedback map is

illustrated in Fig. 8. In [42] the optimal regular quantized

feedback is determined for any fixed number of levels M.

VI. CONCLUSION

In this paper, we presented an overview of the problem of

controlling a linear time-invariant system under a finite

data rate constraint on the communication channel
between the plant and controller. A classical result in

this setting is the existence of a minimum rate (connected

to the instability of the plant) below which stability

cannot be achieved. To this result, we have added a lower

bound on the long term state which captures the dete-

rioration in performance as data rate is reduced and

channel delay increased. We have then described the key

results that pertain to coding and control schemes for
stochastic linear systems, i.e., certainty equivalence,

quasi-separation, and the stochastic instability of finite-

state coding schemes.

If we impose a finite memory structure on the coder-

controller in the noiseless case, further restrictions come

into the picture. It turns out that asymptotic stability can

not be achieved at all, and has to be replaced with some

sort of practical stability. The asymptotic and the transient
behavior of the closed-loop system thus become conflicting

performance indices to optimize and they are both

inherently coupled with the complexity parameters of

the scheme (data rate and memory).

The material presented here describes only a limited

part of a much broader theory which has been under

development in recent years. Many indeed are the

research directions that are active at this moment. Below
we list a number of those directions that, we believe, will

play a prominent role in the next few years.

• The digital communication channel we have consi-

dered in this paper is noiseless. Noisy channels pose

a number of different problems where the interplay

between information and control becomes even

stronger. Initial results have been established in

[53], [54], [71], [75], [78], and [82], but many
questions are still open.

• Optimal control problems in the context of data

rate constraints are, in general, hard to formulate

and solve except in special cases [10], [52], [63],

[72], [79], [82]. Some possible formulations are

related to optimal quantization and rate distortion

theory, areas that are difficult and generally lack

analytically expressible solutions. To find simple
but meaningful control cost functionals in this

context (possibly different from the classical

quadratic one), that can be minimized with a

reasonable effort, is certainly an important open

issue.

• Centralized feedback control is by no means the

only interesting problem one would like to solve

in the context of limited data rates. The major
applications of networked control deal with a

large number of subsystems interacting among

each other through a networked communication

protocol having a number of complexity con-

straints (graph connectivity, global data rate, data

loss, etc.) and having a global control target.

These problems are known as coordinated control

Fig. 8. Graph of a regular quantized feedback map for the case 
 ¼ 1.
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problems and are receiving increasing attention
by many researchers in these years. At the mo-

ment, most of the effort has been put into design-

ing decentralized control strategies that take into

consideration the connectivity constraint of the

communication network, while the information

theoretic constraints expressed by data rate lim-

itations have received comparatively little atten-

tion [56], [61], [76]. Necessarily, a meaningful
theory will have to consider both aspects in an

integrated way. h

APPENDIX I.
PREFIX LANGUAGES

Let S be a finite set and let S! be the language (of

possibly infinite words) generated by the alphabet S.

Consider a subset L $ S! constituted of infinite words.

This is called a prefix language if any word in L can not be

obtained as the concatenation of a word in L and a word

in S!.

Let �t : S! ! Stþ1 the usual function which is the
identity of words of length � t and truncating to length

t þ 1 the words of length 
 t þ 1. Consider a subset
� $ S! and a function

F : S! ! f0; 1g:

Define the stopping time T : � ! N as follows:

TðwÞ :¼ min tjF ( �tðwÞ ¼ 1f g

and the language

L :¼ �TðwÞðwÞjw 2 �
� �

:

Lemma 4: L is a prefix language.

Proof: Let w 2 L and assume that �tðwÞ 2 L for

some t � lengthðwÞ. We have to show that t ¼ lengthðwÞ.

Observe that there exists �w; �w0 2 � such that w ¼ �Tð�wÞð�wÞ
and �tðwÞ ¼ �Tð�w0Þð�w0Þ. This implies that t ¼ Tð�w0Þ. More-
over, �tð�wÞ ¼ �tð�w0Þ. This fact and the previous one imply

that F ( �tð�wÞ ¼ 1 and so Tð�wÞ � t. h

RE FERENCES

[1] R. Adler, A. Konheim, and M. McAndrew,
BTopological entropy,[ Trans. Amer. Math.
Soc., vol. 114, pp. 61–85, 1965.

[2] P. Antsaklis and J. Baillieul, Eds., IEEE
Trans. Autom. Control (Special Issue on
Networked Control Systems), vol. 49, no. 9,
Sep. 2004.

[3] Y. Anzai, BA note on reachability of
discrete-time quantized control systems,[
IEEE Trans. Autom. Control, vol. AC-19, no. 5,
pp. 575–577, Oct. 1974.

[4] J. Baillieul, BFeedback designs for controlling
device arrays with communication channel
bandwidth constraints,[ in ARO Workshop on
Smart Structures, Pennsylvania State Univ.,
Aug. 1999.

[5] VV, BFeedback designs in information-
based control,[ in Stochastic Theory and
Control Proceedings of a Workshop Held in
Lawrence, Kansas, B. Pasik-Duncan, Ed.
New York: Springer-Verlag, 2001, pp. 35–57.

[6] VV, BData-rate requirements for nonlinear
feedback control,[ in Proc. 6th IFAC Symp.
Nonlinear Control Syst., Stuttgart, Germany,
2004, pp. 1277–1282.

[7] T. Berger, Rate Distortion Theory:
A Mathematical Basis for Data Compression.
Englewood Cliffs, NJ: Prentice-Hall, 1971.

[8] D. P. Bertsekas, Dynamic Programming and
Optimal Control. Belmont, MA: Athena,
2000.

[9] A. Bicchi, A. Marigo, and B. Piccoli, BOn the
reachability of quantized control systems,[
IEEE Trans. Autom. Control, vol. 47, no. 4,
pp. 546–563, Apr. 2002.

[10] V. S. Borkar and S. K. Mitter, BLQG control
with communication constraints,[ in
Communications, Computation, Control and
Signal Processing. Norwell, MA: Kluwer,
1997, pp. 365–373.

[11] J. Braslavsky, R. Middleton, and
J. Freudenberg, BEffects of time delay on
feedback stabilization over signal-to-noise
ratio constrained channels,[ in Proc. 16th
IFAC World Congr., Praha, Czech Republic,
Jul. 2005.

[12] R. W. Brockett and D. Liberzon, BQuantized
feedback stabilization of linear systems,[
IEEE Trans. Autom. Control, vol. 45, no. 7,
pp. 1279–1289, Jul. 2000.

[13] L. G. Bushnell, Ed., IEEE Control Syst. Mag.
(Special Section on Networks and Control),
vol. 21, no. 1, 2001.

[14] T. M. Cover and J. A. Thomas, Elements of
Information Theory. New York: Wiley, 1991.

[15] R. E. Curry, BA separation theorem for
nonlinear measurements,[ IEEE Trans. Autom.
Control, vol. 14, no. 5, pp. 561–564, 1969.

[16] VV, Estimation and Control With
Quantized Measurements. Cambridge, MA:
MIT Press, 1970.

[17] S. Dasgupta, BControl over bandlimited
communication channels: Limitations to
stabilizability,[ in Proc. 42nd IEEE Conf. Decis.
Control, 2003, pp. 176–181.

[18] C. de Persis and A. Isidori, BStabilizability
by state feedback implies stabilizability by
encoded state feedback,[ Syst. Control Lett.,
vol. 53, pp. 249–258, 2004.

[19] C. de Persis, Bn-Bit stabilization of
n-dimensional nonlinear systems in
feedforward form,[ IEEE Trans. Autom.
Control, vol. 50, no. 3, pp. 299–311,
Mar. 2005.

[20] D. F. Delchamps, BStabilizing a linear system
with quantized state feedback,[ IEEE Trans.
Autom. Control, vol. 35, no. 8, pp. 916–924,
Aug. 1990.

[21] J. C. Delvenne, BAn optimal quantized
feedback strategy for scalar linear systems,[
IEEE Trans. Autom. Control, vol. 51, no. 2,
pp. 298–303, Feb. 2006.

[22] N. Elia and S. K. Mitter, BStabilization of
linear systems with limited information,[
IEEE Trans. Autom. Control, vol. 46, no. 9,
pp. 1384–1400, Sep. 2001.

[23] F. Fagnani, BChaotic quantized feedback
stabilizers: The scalar case,[ Commun. Inf.
Syst., vol. 4, no. 1, pp. 53–72, 2004.

[24] F. Fagnani and S. Zampieri, BStability analysis
and synthesis for scalar linear systems with
a quantized feedback,[ IEEE Trans. Autom.
Control, vol. 48, no. 9, pp. 1569–1584,
Sep. 2003.

[25] VV, BQuantized stabilization of linear
systems: Complexity versus performances,[
IEEE Trans. Autom. Control, vol. 49, no. 9,
pp. 1534–1548, Sep. 2004.

[26] VV, BA symbolic dynamics approach to
performance analysis of quantized feedback
systems: The scalar case,[ SIAM J. Control
Optim., vol. 44, no. 3, pp. 816–866, 2005.

[27] T. R. Fischer, BOptimal quantized control,[
IEEE Trans. Autom. Control, vol. AC-27, no. 4,
pp. 996–998, Apr. 1982.

[28] VV, BQuantized control with data
compression constraints,[ Optim. Control
Appl. Methods, vol. 5, no. 1, pp. 39–55, 1984.

[29] J. Freudenberg, J. Braslavsky, and
R. Middleton, BControl over signal-to-noise
ratio constrained channels: Stabilization and
performance,[ in Proc. 44th IEEE Conf. Decis.
Control, 2005, pp. 191–196.

[30] M. Fu and L. Xie, BThe sector bound approach
to quantized feedback control,[ IEEE Trans.
Autom. Control, vol. 50, no. 11, pp. 1698–1711,
Nov. 2005.

[31] A. Gersho and R. M. Gray, Vector Quantization
and Signal Compression. Norwell, MA:
Kluwer, 1993.

[32] G. C. Goodwin, H. Haimovich, D. E. Quevedo,
and J. S. Welsh, BA moving horizon approach
to networked control system design,[

Nair et al.: Feedback Control Under Data Rate Constraints: An Overview

Vol. 95, No. 1, January 2007 | Proceedings of the IEEE 135



IEEE Trans. Autom. Control, vol. 49, no. 9,
pp. 1427–1445, Sep. 2004.

[33] T. Hayakawa, H. Ishii, and K. Tsumura,
BAdaptive quantized control for nonlinear
uncertain systems,[ in Proc. Amer. Control
Conf., Minneapolis, MN, Jun. 2006,
pp. 2706–2711.

[34] J. Hespanha, A. Ortega, and L. Vasudevan,
BTowards the control of linear systems with
minimum bit-rate,[ in Proc. 15th Int. Symp.
Math. Theo. Netw. Sys., Univ. Notre Dame,
Aug. 2002.

[35] H. Ishii and B. A. Francis, Limited Data Rate in
Control Systems With Networks. New York:
Springer-Verlag, 2002, vol. 275, Lecture Notes
in Control and Information Sciences.

[36] VV, BQuadratic stabilization of
sampled-data systems with quantization,[
Automatica, vol. 39, no. 10, pp. 1793–1800,
2003.

[37] H. Ishii, T. Basar, and R. Tempo,
BRandomized algorithms for quadratic
stability of quantized sampled-data systems,[
Automatica, vol. 40, pp. 839–846, 2004.

[38] H. Ishii and T. Bazar, BRemote control
of LTI systems over networks with state
quantization,[ Syst. Control Lett., vol. 54,
no. 1, pp. 15–31, 2005.

[39] J. C. Kieffer and J. G. Dunham, BOn a type
of stochastic stability for a class of encoding
schemes,[ IEEE Trans. Inf. Theory., vol. IT-29,
no. 6, pp. 703–717, Nov. 1983.

[40] R. E. Larson, BOptimum quantization in
dynamic systems,[ IEEE Trans. Autom.
Control, vol. AC-12, no. 2, pp. 162–168,
Feb. 1967.

[41] A. Lasota and M. C. Mackey, Chaos, Fractals,
and Noise. New York: Springer-Verlag,
1994.

[42] K. Li and J. Baillieul, BRobust quantization
for digital finite communication bandwidth
(DFCB) control,[ IEEE Trans. Autom. Control,
vol. 49, no. 9, pp. 1573–1584, Sep. 2004.

[43] VV, BProblems in decentralized
sensor-actuator networks,[ in Proc. 44th IEEE
Conf. Decis. Control, 2005, pp. 3207–3212.

[44] D. Liberzon, BOn stabilization of linear
systems with limited information,[
IEEE Trans. Autom. Control, vol. 48, no. 2,
pp. 304–307, Feb. 2003.

[45] D. Liberzon and J. P. Hespanha, BStabilization
of nonlinear systems with limited information
feedback,[ IEEE Trans. Autom. Control,
vol. 50, no. 6, pp. 910–915, Jun. 2005.

[46] D. Liberzon and D. Nesic, BInput-to-state
stabilization of linear systems with quantized
feedback,[ in Proc. 44th IEEE Conf. Decis.
Control, 2005, pp. 8197–8202.

[47] Q. Ling and M. D. Lemmon, BStability of
quantized control systems under dynamic
bit assignment,[ IEEE Trans. Autom. Control,
vol. 50, no. 5, pp. 734–740, May 2005.

[48] J. Liu and N. Elia, BQuantized feedback
stabilization of nonlinear affine systems,[ Int.
J. Control, vol. 77, no. 3, pp. 239–249, 2004.

[49] R. S. Marleau and J. E. Negro, BComments
on Foptimum quantization in dynamic
systems_,[ IEEE Trans. Autom. Control,
vol. AC-17, no. 2, pp. 273–274, Feb. 1972.

[50] N. C. Martins and M. A. Dahleh,
BFundamental limitations of performance in
the presence of finite capacity feedback,[ in
Proc. Amer. Control Conf., 2005, pp. 79–86.

[51] N. C. Martins, M. A. Dahleh, and N. Elia,
BFeedback stabilization of uncertain systems
in the presence of a direct link,[ IEEE Trans.
Autom. Control, vol. 51, no. 3, pp. 438–447,
Mar. 2006.

[52] A. S. Matveev and A. V. Savkin, BThe problem
of LQG optimal control via a limited capacity
communication channel,[ Sys. Control Lett.,
vol. 53, no. 1, pp. 51–64, 2004.

[53] VV, BAn analogue of Shannon information
theory for networked control systems.
Stabilization via a noisy discrete channel,[
in Proc. 43rd IEEE Conf. Decis. Control, 2004,
pp. 4491–4496.

[54] VV, BComments on Fcontrol over noisy
channels_ and relevant negative results,[ IEEE
Trans. Autom. Control, vol. 50, no. 12,
pp. 2105–2110, Dec. 2005.

[55] VV, BMultirate stabilization of linear
multiple sensor systems via limited capacity
communication channels,[ SIAM J. Control
Optim., vol. 44, no. 2, pp. 584–617, 2005.

[56] VV, BDecentralized stabilization of linear
systems via limited capacity communication
networks,[ in Proc. 44th IEEE Conf. Decis.
Control, 2005, pp. 1155–1161.

[57] G. N. Nair, S. Dey, and R. J. Evans, BInfimum
data rates for stabilising Markov jump linear
systems,[ in Proc. 42nd IEEE Conf. Dec.
Control, 2003, pp. 1176–1181.

[58] G. N. Nair and R. J. Evans, BStabilization
with data-rate-limited feedback: Tightest
attainable bounds,[ Sys. Control Lett., vol. 41,
no. 1, pp. 49–56, Sep. 2000.

[59] VV, BExponential stabilizability of
finite-dimensional linear systems with
limited data rates,[ Automatica, vol. 39,
no. 4, pp. 585–593, Apr. 2003.

[60] VV, BStabilizability of stochastic linear
systems with finite feedback data rates,[ SIAM
J. Control Optim., vol. 43, no. 2, pp. 413–436,
Jul. 2004.

[61] G. N. Nair, R. J. Evans, and P. E. Caines,
BStabilizing decentralised linear systems
under data rate constraints,[ in Proc.
43rd IEEE Conf. Decis. Control, 2004,
pp. 3992–3997.

[62] G. N. Nair, R. J. Evans, I. M. Y. Mareels, and
W. Moran, BTopological feedback entropy and
nonlinear stabilization,[ IEEE Trans. Autom.
Control, vol. 49, no. 9, pp. 1585–1597,
Sep. 2004.

[63] G. N. Nair, M. Huang, and R. J. Evans,
BOptimal infinite horizon control under a low
data rate,[ in Proc. 14th IFAC Symp. Sys. Ident.,
Newcastle, Australia, Mar. 2006.

[64] D. Nesic and A. R. Teel, BInput-output
stability properties of networked control
systems,[ IEEE Trans. Autom. Control, vol. 49,
no. 10, pp. 1650–1667, Oct. 2004.

[65] I. R. Petersen and A. V. Savkin, BMulti-rate
stabilization of multivariable discrete-time
linear systems via a limited capacity
communication channel,[ in Proc. 40th
IEEE Conf. Dec. Control, 2001, pp. 304–309.

[66] V. Phat, J. Jiang, A. V. Savkin, and
I. R. Petersen, BRobust stabilization of linear
uncertain discrete-time systems via a limited
capacity communication channel,[ Sys.
Control Lett., vol. 53, no. 5, pp. 347–360,
2004.

[67] B. Picasso, F. Gouaisbaut, and A. Bicchi,
BConstruction of invariant and attractive
sets for quantized-input linear systems,[ in

Proc. 41st IEEE Conf. Dec. Control, 2002,
pp. 824–829.

[68] M. Pollicot and M. Yuri, Dynamical Systems
and Ergodic Theory. Cambridge, U.K.:
Cambridge Univ. Press, 1998, vol. 40,
London Math. Soc. Student Texts, ch. 3.

[69] J. G. Proakis and M. Salehi, Communication
Systems Engineering. Englewood Cliffs, NJ:
Prentice-Hall, 2002.

[70] A. Rojas, J. H. Braslavsky, and
R. H. Middleton, BControl over a
bandwidth limited signal-to-noise ratio
constrained communication channel,[ in
Proc. 44th IEEE Conf. Decis. Control, 2005,
pp. 197–202.

[71] A. Sahai, BThe necessity and sufficiency of
anytime capacity for control over a noisy
communication link,[ in Proc. 43rd IEEE Conf.
Dec. Control, 2004, pp. 1896–1901.

[72] A. V. Savkin, BAnalysis and synthesis of
networked control systems: Topological
entropy, observability, robustness and optimal
control,[ Automatica, vol. 42, pp. 51–62,
2006.

[73] C. E. Shannon, BA mathematical theory
of communication,[ Bell Syst. Tech. J., 1948,
Reprinted in FClaude Elwood Shannon
Collected Papers_, IEEE Press, 1993.

[74] VV, BCoding theorems for a discrete source
with a fidelity criterion,[ Inst. Radio Eng. Int.
Conv. Rec., 1959, Reprinted in FClaude
Elwood Shannon Collected Papers_, IEEE
Press, 1993.

[75] T. Simsek, R. Jain, and P. Varaiya, BScalar
estimation and control with noisy binary
observations,[ IEEE Trans. Autom. Control,
vol. 49, no. 9, pp. 1598–1603, 2004.

[76] S. Tatikonda, BSome scaling properties
of large distributed control systems,[ in
Proc. 42nd IEEE Conf. Decis. Control, 2003,
pp. 3142–3147.

[77] S. Tatikonda and S. K. Mitter, BControl under
communication constraints,[ IEEE Trans.
Autom. Control, vol. 49, no. 7, pp. 1056–1068,
Jul. 2004.

[78] VV, BControl over noisy channels,[
IEEE Trans. Autom. Control, vol. 49, no. 7,
pp. 1196–1201, Jul. 2004.

[79] S. Tatikonda, A. Sahai, and S. K. Mitter,
BStochastic linear control over a
communication channel,[ IEEE Trans.
Autom. Control, vol. 49, no. 9, pp. 1549–1561,
Sep. 2004.

[80] K. Tsumura and J. Maciejowski, BStability of
SISO control systems under constraints of
channel capacities,[ in Proc. 42nd IEEE Conf.
Decis. Control, 2003, pp. 193–198.

[81] W. S. Wong and R. W. Brockett, BSystems
with finite communication bandwidth
constraints II: Stabilization with limited
information feedback,[ IEEE Trans. Autom.
Control, vol. 44, no. 5, pp. 1049–1053,
May 1999.

[82] S. Yuksel, O. C. Imer, and T. Basar,
BConstrained state estimation and control
over communication networks,[ in Proc. 38th
Annu. Conf. Inf. Sci. Syst., Princeton Univ.,
Princeton, NJ, 2004.

[83] G. Z. Zhang, G. N. Nair, R. J. Evans, and
B. Wittenmark, BA data-rate limited view
of adaptive control,[ in Proc. 14th IFAC
Symp. Sys. Ident., Newcastle, Australia,
Mar. 2006.

Nair et al.: Feedback Control Under Data Rate Constraints: An Overview

136 Proceedings of the IEEE | Vol. 95, No. 1, January 2007



ABOUT T HE AUTHO RS

Girish N. Nair (Member, IEEE) was born in Petaling

Jaya, Malaysia. He received the B.E. (elec., first

class honors) degree in 1994, the B.Sc. (math.)

degree in 1995, and the Ph.D. (elec. eng.) degree

in 2000, on scholarships from the Australian

government and the University of Melbourne,

Melbourne, Australia.

He is currently a Senior Lecturer in the

Department of Electrical and Electronic Engineer-

ing at the University of Melbourne, and has also

held visiting positions at the University of Padova and Boston University.

His research interests lie in the intersection of communications,

information theory, and control. He serves as an Associate Editor for

SIAM Journal on Control and Optimization.

Dr. Nair has received several prizes, including the SIAM Outstanding

Paper Prize 2006, the Best Theory Paper Prize at the UKACC Int. Conf.

Control, Cambridge, 2000 (both with Rob Evans), and the L. R. East Medal

in electrical engineering, 1994.

Fabio Fagnani received the Laurea degree in

mathematics from the University of Pisa, Pisa,

Italy, and Scuola Normale Superiore, Pisa, in

1986, and the Ph.D. degree in mathematics from

the University of Groningen, Groningen, The

Netherlands, in 1991.

From 1991 to 1998, he was an Assistant

Professor at the Scuola Normale Superiore. Since

1998, he has been with the Politecnico di Torino

where he is currently Full Professor of Mathemat-

ical Analysis. His research activities are on the fundamental mathemat-

ical aspects of systems and control theory, and of coding theory, on

which he is an author of about 30 papers in international journals.

Specific themes of his current interest are control under communication

constraints, coordinated control, and their connection with graph theory

and symbolic dynamics; inverse problems, and recursive deconvolution

techniques; codes over groups, and their use in high-performance

schemes.

Sandro Zampieri received the Laurea degree in

electrical engineering and the Ph.D. degree in

system engineering from the University of Padova,

Padova, Italy, in 1988 and 1993, respectively.

In 1991–92, 1993, and 1996, he was Visiting

Scholar at the Laboratory for Information and

Decision Systems, Massachusetts Institute of

Technology, Cambridge, MA. He has also held

visiting positions at Delft Technical University, The

Netherlands, at the Institut fuer Mathematik der

Universitaet Innsbruck, Austria, and the Department of Mathematics at

the University of Groningen, The Netherlands. Since 1992, he has been

with the Department of Information Engineering, University of Padova,

where he is presently Full Professor in Automatic Control. He served as

an Associate Editor of the Siam Journal on Control and Optimization

during 2002–2004, and is presently chair of the IFAC technical committee

on BNetworked Systems.[ His research interests include automatic

control, dynamical systems theory, networked control, and the relations

between control and communications.

Robin J. Evans (Fellow, IEEE) was born in

Melbourne, Australia, in 1947. He received the

B.E. (electrical) degree from the University of

Melbourne, in 1969 and the Ph.D. degree from

the University of Newcastle, Newcastle, Australia,

in 1975. He completed postdoctoral studies at the

Laboratory for Information and Decision Sys-

tems, Massachusetts Institute of Technology,

Cambridge, MA, and the Control and Man-

agement Department, Cambridge University,

Cambridge, U.K.

After completing the B.E. degree, he spent five years as an

engineering officer with the Royal Australian Air Force, working on radar

systems. In 1977 he took up a position at the University of Newcastle,

where he was Head of the Department of Electrical and Computer

Engineering from 1986 to 1991, and Co-director of an ARC Special

Research Center on Industrial Control Systems. In 1992 he moved to the

University of Melbourne, where he headed the Department of Electrical

and Electronic Engineering until 1996, and also led the Cooperative

Research Center for Sensor Signal and Information Processing and the

Center for Networked Decision Systems. He is currently Director of the

Victoria Research Laboratory of National ICT Australia. His research has

ranged across many areas, including control theory, radar systems, signal

processing, and computer systems.

Dr. Evans is a Fellow of the Australian Academy of Science, and the

Australian Academy of Technological Sciences and Engineering.

Nair et al.: Feedback Control Under Data Rate Constraints: An Overview

Vol. 95, No. 1, January 2007 | Proceedings of the IEEE 137


