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Abstract

Real-world networks in technology, engineering and biology often exhibit
dynamics that cannot be adequately reproduced using network models given
by smooth dynamical systems and a fixed network topology. Asynchronous
networks give a theoretical and conceptual framework for the study of network
dynamics where nodes can evolve independently of one another, be constrained,
stop, and later restart, and where the interaction between different components
of the network may depend on time, state, and stochastic effects. This framework
is sufficiently general to encompass a wide range of applications ranging from
engineering to neuroscience. Typically, dynamics is piecewise smooth and
there are relationships with Filippov systems. In this paper, we give examples of
asynchronous networks, and describe the basic formalism and structure. In the
following companion paper, we make the notion of a functional asynchronous
network rigorous, discuss the phenomenon of dynamical locks, and present a
foundational result on the spatiotemporal factorization of the dynamics for a
large class of functional asynchronous networks.
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1. Introduction

In this work we develop a theory of asynchronous networks and event driven dynamics. This
theory constitutes an approach to network dynamics that takes account of features encountered
in networks from modern technology, engineering, and biology, especially neuroscience. For
these networks dynamics can involve a mix of distributed and decentralized control, adap-
tivity, event driven dynamics, switching, varying network topology and hybrid dynamics
(continuous and discrete). The associated network dynamics will generally only be piecewise
smooth, nodes may stop and later restart and there may be no intrinsic global time (we give
specific examples and definitions later). Significantly, many of these networks have a function.
For example, transportation networks bring people and goods from one point to another and
neural networks may perform pattern recognition or computation.

Given the success of network models based on smooth differential equations and methods
based on statistical physics, thermodynamic formalism and averaging (which typically lead to
smooth network dynamics), it is not unreasonable to ask whether it is necessary to incorporate
issues such as nonsmoothness in a theory of network dynamics. While nonsmooth dynamics
is more familiar in engineering than in physics, we argue below that ideas from engineering,
control and nonsmooth dynamics apply to many classes of network and that nonsmoothness
often cannot be ignored in the analysis of network function. As part of these introductory
comments, we also explain the motivation underlying our work, and describe one of our main
results: the modularization of dynamics theorem.

Dedication to the memory of David Broomhead, 1950-2014

The genesis of this paper lies in a visit in 2010 by one us (MF) to work with Dave Broomhead
at Manchester University. Dave was very interested in asynchronous processes and local
clocks. During the visit, he came up with a 2 cell random dynamical systems model for the
investigation of asynchronous dynamics and local time. This 2 cell model provided the seed
and stimulus for the work described in this paper. Dave’s illness and untimely death sadly
meant that our planned collaboration on this work could not be realized.

1.1. Temporal averaging

Consider the analysis of a network where links are added and removed over time. Two extreme
cases have been widely considered in the literature. If the network topology switches rapidly,
relative to the time scale of the phenomenon being considered, then we may be able to replace
the varying topology by the time-averaged topology®. Providing that the network topology
is not state dependent, the resulting dynamics will typically be smooth. On the other hand,
if the topology changes slowly enough relative to the time scale of interest, we may regard
the topology as constant and again we obtain smooth network dynamics. Either one of these
approaches may be applicable in a system where time scales are clearly separated.

However, in many situations, especially those involving control or close to bifurcation,
changes in network topology may play a crucial role in network function and an averaging
approach may fail or neglect essential structure. This is well-known for problems in optimized
control where solutions are typically nonsmooth and averaging gives the wrong solutions (for
example, in switching problems using thermostats). For an example with variable network
topology, we cite the effects of changing connection structure (transmission line breakdown),

% For example, if the input structure is additive—see section 2.
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or adding/subtracting a microgrid, on a power grid. Neither averaging nor the assumption
of constant network structure are appropriate tools: we cannot average the problems away.
Instead, we are forced to engage with an intermediate regime, where nonsmoothness (switch-
ing) and control play a crucial role in network function.

1.2. Spatial averaging and network evolution

Much current research on networks is related to the description and understanding of complex
systems [7, 18, 44, 48]. Roughly speaking, and avoiding a formal definition [44], we regard
a complex system as a large network of nonlinearly interacting dynamical systems where
there are feedback loops, multiple time and/or spatial scales, emergent behaviour, etc. One
established approach to complex networks and systems uses ideas from statistical mechanics
and thermodynamic formalism. For example, models of complex networks of interconnected
neurons can sometimes be described in terms of their information processing capability and
entropy [60]. These methods originate from applications to large interacting systems of par-
ticles in physics. As Schrodinger points out in his 1943 Trinity College, Dublin, lectures [61]

“...the laws of physics and chemistry are statistical throughout.”

In contrast to the laws of physics and chemistry, evolution plays a decisive role in the devel-
opment of complex biological structure. Functional biological structures that provided the
basis for evolutionary development can be quite small—the nematode worm caenorhabditis
elegans has 302 neurons. If the underlying small-scale structure still has functional relevance,
an approach based on statistical averages to complex biological networks has to be limited; on
the one hand, averaging over the entire network will likely ignore any small scale structure,
and on the other hand statistical averages have little or no meaning for small systems— at
least on a short time scale.

Reverse engineering large biological structures appears completely impractical; in part this
is because of the role that evolution plays in the development of complex structure. Evolution
works towards optimization of function, rather than simplicity, and is often local in character
with the flavour of decentralized control. Similar issues arise in understanding evolved engi-
neering structures. For example, the internal combustion engine of a car in 1950 was a simple
device, whose operation was synchronized through mechanical means. A modern internal
combustion engine is structurally complex and employs a mix of synchronous and asynchro-
nous systems controlled by multiple computer processors, sensors and complex computer
code.

1.3. Reductionism

In nonlinear network dynamics, and complex systems generally, there is the question as to
how far one can make use of reductionist techniques [5], [44, 2.5]. One approach, advanced
by Alon and Kastan [39] in biology, has been the identification and description of relatively
simple and small dynamical units, such as non-linear oscillators or network motifs (small net-
work configurations that occur frequently in large biological networks [18, chapter 19]). Their
premise is that a modular, or engineering, approach to network dynamics is feasible: identify
building blocks, connect together to form networks and then describe dynamical properties of
the resulting network in terms of the dynamics of its components.

“Ideally, we would like to understand the dynamics of the entire network based on the
dynamics of the individual building blocks.” Alon [4, page 27].
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Figure 1. A functional feedforward network with 8 nodes.

While such a reductionist approach works well in linear systems theory, where a superpo-
sition principle holds, or in the study of synchronization in weakly coupled systems of non-
linear approximately identical oscillators [8, 32, 57, 58], it is usually unrealistic in the study
of heterogenous networks modelled by a system of analytic nonlinear differential equations:
network dynamics may bear little or no relationship to the intrinsic (uncoupled) dynamics
of nodes.

1.4. A theory of asynchronous networks

The theory of asynchronous networks we develop provides an approach to the analysis of
dynamics and function in complex networks. We illustrate the setting for our main result with
a simple example. Figure 1 shows the schematics of a network where there is only intermit-
tent connection between nodes’. We assume eight nodes MV, ..., Ns. Each node N; will be given
an initial state and started at time 7; > 0. Crucially, we assume the network has a function:
reaching designated terminal states in finite time—indicated on the right hand side of the
figure. Nodes interact depending on their state. For example, referring to figure 1, nodes N,
N, first interact during the event indicated by E¢. Observe there is no global time defined for
this system but there is a partially ordered temporal structure: event E¢ always occurs after
event E“ but may occur before or after event E”. We caution that while the direction of time is
from left-to-right, there is no requirement of moving from left to right in the spatial variables:
the phase space dimension for nodes could be greater than one and the initialization and ter-
minations sets could be the same. This example can be generalized to allow for changes in
the number and type of nodes after each event. The intermittent connection structure we use
may be viewed as an extension of the idea of conditional action as defined by Holland in the
context of complex adaptive systems [36].

Our main result, stated and proved in the companion paper [13], is a modularization of
dynamics theorem that yields a functional decomposition for a large class of asynchronous
networks. Specifically, we give general conditions that enable us to represent a large class of
functional asynchronous networks as feedforward functional networks of the type illustrated
in figure 1. As a consequence, the function of the original network can be expressed explicitly

7Figure 1 can be viewed as representing part of a threaded computer program. The events E, ..., E" will represent
synchronization events—evolution of associated threads is stopped until each thread has finished its computation
and then variables are synchronized across the threads.
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in terms of uncoupled node dynamics and event function. Nonsmooth effects, such as changes
in network topology through decoupling of nodes and stopping and restarting of nodes, are one
of the crucial ingredients needed for this result. In networks modelled by smooth dynamical
systems, all nodes are effectively coupled to each other at all times and information propagates
instantly across the entire network. Thus, a spatiotemporal decomposition is only possible if
the network dynamics is nonsmooth and (subsets of) nodes are allowed to evolve indepen-
dently of each other for periods of time. This allows the identification of dynamical units, each
with its own function, that together comprise the dynamics and function of the entire network.
The result highlights a drawback of averaging over a network: the loss of information about
the individual functional units, and their temporal relations, that yield network function.

A functional decomposition is natural from an evolutionary point of view: the goal of an
evolutionary process is optimization of (network) function. Thus, rather than asking how net-
work dynamics can be understood in terms of the dynamics of constituent subnetworks—the
classical reductionist question—the issue is how network function can be understood in terms
of the function of network constituents. Our result not only gives a satisfactory answer to
Alon’s question for a large class of functional asynchronous networks but suggests an approach
to determining key structural features of components of a complex system that is partly based
on an evolutionary model for development of structure. Starting with a small well understood
model, such as the class of functional feedforward networks described above, we propose look-
ing at bifurcation in the context of optimising a network function—for example, understanding
the effect on function when we break the feedforward structure by adding feedback loops.

1.5. Relations with distributed networks

An underlying theme and guide for our formulation and theory of asynchronous networks
is that of efficiency and cost in large distributed networks. We recall the guidelines given by
Tannenbaum & van Steen [63, p 11] for scalability in large distributed networks (italicised
comments added):

e No machine has complete information about the (overall) system state. (communication
limited)

e Machines make decisions based only on local information. (decentralized control)

e Failure of one machine does not ruin the algorithm. (redundancy)

e There is no implicit assumption of global time.

Of course, networks dynamics, in either technology, engineering or biology, is likely to involve
a complex mix of synchronous and asynchronous components. In particular, timing (clocks,
whether local or global) may be used to trigger the onset of events or processes as part of a weak
mechanism for centralized control or resetting. Evolution is opportunistic—whatever works well
will be adopted (and adapted) whether synchronous or asynchronous in character. In specific
cases, especially in biology, it may be a matter of debate as to which viewpoint—synchronous
or asynchronous—is the most appropriate. The framework we develop is sufficiently flexible
to allow for a wide mix of synchronous and asynchronous structure at the global or local level.

1.6. Past work

Mathematically speaking, much of what we say has significant overlap with other areas and
past work. We cite in particular, the general area of nonsmooth dynamics, Filippov systems
and hybrid systems (for example, [6, 11, 27, 52]) and time dependent network structures (for
example, [9, 33, 37, 47]). While the theory of nonsmooth dynamics focuses on problems
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in control, impact, and engineering, rather than networks, there is significant work study-
ing bifurcation (for example [10, 43, 49]) which is likely to apply to parts of the theory we
describe. From a vast literature on networks and dynamics, we cite Newman’s text [54] for a
comprehensive introduction to networks, and the very recent tutorial of Porter & Gleeson [59]
which addresses questions related to our work, gives an overview and introduction to dynam-
ics on networks, and includes an extensive bibliography of past work.

1.7 Outline of contents

After preliminaries in section 2, we give in section 3 vignettes (no technical details) of several
asynchronous networks from technology, engineering, transport and neuroscience. In sec-
tion 4, we give a mathematical formulation of an asynchronous network with a focus on event
driven dynamics, and constraints. We follow in section 5 with two more detailed examples of
asynchronous networks including an illuminating and simple example of a transport network
which requires minimal technical background yet exhibits many characteristic features of an
asynchronous network, and a discussion of power grid models that indicates both the limita-
tions and possibilities of our approach. We conclude with a discussion of products of asyn-
chronous networks in section 6 that illuminates some of the subtle features of the event map.
In the following paper [13], we develop the theory of functional asynchronous networks and
give the statement and proof of the modularization of dynamics theorem.

2. Preliminaries and generalities on networks

2.1. Notational conventions

We recall a few mostly standard notational conventions used throughout. Let N denote the
natural numbers (the strictly positive integers), Z, denote the set of nonnegative integers,
R, = {xeR|x>0}, and R(>0) = {x e R, |x=0}. Given n €N, define n = {1, ...,n}. Let
n' = {0, 1, ...,n} and, more generally, for A C N define A" = A U {0}.

2.2. Network notation

We establish our conventions on network notation; we follow these throughout this work.
Suppose the network N has k nodes, M, ..., N,. Abusing notation, we often let N denote
both network and the set of nodes {V,, ..., N;}. Denote the state or phase space for N; by M3
and set M = [, M—the network phase space. Denote the state of node N; by x; € M; and the
network state by X = (xj, ..., Xz) € M.
Smooth dynamics on A/ will be given by a system of ordinary differential equations (ODEs)
of the form

X;:f;(xi;Xj],...,Xjei), iEk, (1)

where the components f; are at least C' (usually C* or analytic) and the following conditions
are satisfied.

(N1) Foralli €k, j, <... <}, are distinct elements of k\ {i} (and so e; < k).
Set J(D) = {ji» ---»J,, } C K, i €k (J(i) may be empty).

8 We assume the phase space for each node is a connected differential manifold—usually a domain in R” or the
n-torus, T".
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(N2) For each i € k, the evolution of N; depends nontrivially on the state of N}, j € J(i), in
the sense that there exists a choice of x; € M; and x; € M, j, € J(i)\ {j}, such that
fixixj, ..., Xjel») is not constant as a function of x;.

(N3) We generally assume the evolution of N; depends on the state of N;. If we need to
emphasize that f; does not depend on x; in the sense of (N2), we write f;(xj, ..., X J'e,-)’

if J(i) = @. If J(i) = @, we regard the dependence of f; on x; as nontrivial iff f; is not
identically zero and then write f;(x;). Otherwise f; = 0.

Remark 2.1. Given network equations (1) which do not satisfy (N1-3), we can first re-
define the f; so as to satisfy (N1). Next we remove trivial dependencies so as to satisfy (N2).
Finally, we check for the dependence of f; on the internal state x; and modify the f; as neces-
sary to achieve (N3). If f; =0, we can remove the node from the network. Consequently, it is
no loss of generality to always assume that (N1-3) are satisfied, with f; # 0. A consequence
is that any network vector fieldf = (fj, ...,f;,) : M — TM can be uniquely written in the form
(1) so as to satisfy (N1-3).

Let M(k) denote the space of k x k 0-1 matrices 3 = (3;);jex With coefficients in {0, 1}
and B3; = 0, all i € k. Each 3 € M(k) determines uniquely a directed graph I’z with vertices
Nj, ..., Ny and directed edge N; — N; iff 3; = 1and i = j. The matrix (3 is the adjacency matrix
of T3. We refer to 3 as a connection structure on N'.

If f: M—> TM is a network vector field satisfying (N1-3), then f determines a unique
connection structure C(f) € M (k) with associated graph I'v. In order to specify the graph
uniquely, it suffices to specify the set of directed edges.

We define the nerwork graph T' = T'(V, f) to be the directed graph I Thus, T'(NV, f) has
node set A= {N,, ..., N;} and a directed connection N; — N, will be an edge of I if and only if
J = i and the dynamical evolution of N; depends nontrivially on the state of N;.

Remark 2.2. Our conventions are different from formalisms involving multiple edge types
(for example, see [3, 32] for continuous dynamics and [1] for discrete dynamics). We allow at
most one connection between distinct nodes of the network graph and do not use self-loops:
connections encode dependence.

2.2.1. Additive input structure. In many cases of interest, we have an additive input structure
[26] and the components f; of f may be written

(XX, X)) = BE&) + Y Fi(x, %), i €k. )
s=1

Additive input structure implies that there are no interactions between inputs N, Ny — N, as
long as j, k=i, j =k, and allows us to add and subtract inputs and nodes in a consistent way.
We may think of x; = F(x;) as defining the intrinsic dynamics of the node.

Remarks 2.3.

(1) Additive input structure is usually assumed for modelling weakly coupled nonlinear
oscillators and is required for reduction to the standard Kuramoto phase oscillator model
[25, 38, 42].
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(2) If we identify a null state zj» for each node N, then the decomposition (2) will be unique if
we require Ej(z;, x;) = 0°. If a node is in the null state then it has no output to other nodes
and is ‘invisible’ to the rest of the network. If we have an additive structure on the phase
spaces M; (for example, each M; is a domain in R” or an n-torus T") it is natural to take
z; =0.

(3) If M; =R" or T", i €k, and F;(x;, X)) = G;(x; — X)), i, j; €K, the coupling is diffusive
(see [1, section 2.5] for general phase spaces).

2.3. Synchronous networks

Systems of ordinary differential equations like (1) give mathematical models for synchronous
networks. By synchronous, we mean nodes are all synchronized to a global clock—the termi-
nology comes from computer science. Indeed, if each node comes with a local clock, then all
the clocks can be set to the same time provided that the network is connected (we ignore the
issue of delays, but see [45]). The synchronization of local clocks is essentially forced by the
model and the connectivity of the network graph; nodes cannot evolve independently of one
another unless the network is disconnected.
We recall some characteristic features of synchronous networks.

Global evolution: Nodes never evolve independently of each other: if the state of any
node is perturbed, then generically the evolution of the states of the remaining nodes
changes.

Stopped nodes: If a node (or subset of node variables) is at equilibrium or ‘stopped’
for a period of time, it will remain stopped for all future time. If a node has a non-zero
initialization, it will never stop (in finite time).

Fixed connection structure: The connection structure of a synchronous network is fixed:
it does not vary in time and is not dependent on node states: one system of ODEs suffices
to model network dynamics.

Reversibility: Solutions are uniquely defined in backward time.

3. Asynchronous networks: examples

In this section, we give several vignettes of asynchronous networks that illustrate the main
features differentiating them from synchronous networks. We amplify two of these examples
in section 5 after we have developed our basic formalism for asynchronous networks.

Example 3.1 (Threaded and parallel computation). Threaded or parallelized compu-
tation provides an example of a discrete stochastic asynchronous network. Computation based
on a single processor (or single core of a processor) proceeds synchronously and sequentially.
The speed of the computation is dependent on the clock speed of the processor as the proces-
sor clock synchronizes the various steps in the computation. In threaded or parallel computa-
tion, computation is broken into blocks or ‘threads’ which are then computed independently of
each other at a rate that is partly dependent on the clock rates of the processors involved in the
computation (these need not be identical). At certain points in the computation, threads need
to exchange information with other threads. This process involves stopping and synchronizing

% For identical phase spaces, assume inputs are asymmetric—Fj; = Fy, if j = {. For symmetric inputs see [2, 32].

565



Nonlinearity 30 (2017) 558 C Bick and M Field

(updating) the thread states: a thread may have to stop and wait for other threads to complete
their computations and update data before it can continue with its own computation.

Threaded computation is non-deterministic: the running and stopping times of each thread
are unpredictable and differ from run to run.

Each thread has its own clock (determined by its associated processor). Threads will be una-
ware of the clock times of other threads except during the stopping and synchronization events
which can be managed synchronously (central control) or asynchronously (local control).

This example shows many characteristic features of an asynchronous network: nodes
(threads) evolving independently of each other, and stopping, synchronization and restarting
events. The network also has a function—transforming a set of initial data into a set of final
data in finite time—and there is the possibility of incorrect code that can lead to a process that
stops before the computation is complete (a deadlock), or errors where threads try to access a
resource at the same time (race condition). o

Example 3.2 (Power grids & microgrids). A power grid consists of a connected net-
work of various types of generators and loads connected by transmission lines. A critical is-
sue for the stability of the power grid is maintaining tight voltage frequency synchronization
across the grid in the presence of voltage phase differences between generators and loads and
variation in generator outputs and loads. We refer to Kundur [39] for classical power grid
theory, Dorfler e al [23] or Nishikawa & Motter [55], for some more recent and mathematical
perspectives, and [41] for general issues and definitions on power system stability.

Historically, power grids have been centrally controlled and one of the main stability
issues has been the effect on stability of a sudden change in structure—such as the removal
of a transmission line, breakdown of a generator or big change in load. Detailed models
of the power grid need to account for a complex multi-timescale stiff system. Typically
stability has been analyzed using numerical methods. However, relatively simple classes
of network models for power grids based on frequency and phase synchronization have
been developed which are applicable for the analysis of some stability and control issues,
especially those described in the next paragraph. We describe these models in more techni-
cal detail in section 5.

Interest has recently focused on renewable (small) energy sources in a power grid (for
example, wind and solar power) and how to integrate microgrids based on renewable sources
into the power grid using a mix of centralized and decentralized control. Concurrent with
this interest is the issue of smart grids: modifying local loads in terms of the availability and
real time costs of power. While the classical power grid model is of a synchronous network,
though with asynchronous features such as the effects on stability of the breakdown of a
connection (transmission line), these problems focus on asynchronous networks. For exam-
ple, given a microgrid with renewable energy sources such as wind and solar, time varying
loads and buffers (large capacity batteries), how can the microgrid be switched in and out of
the main power grid while maintaining overall system stability? In this case, switching will
be determined by state (for example, frequency changes in the main power grid signifying
changes in power demand or changes in the output of renewable sources or battery reserves)
and stochastic effects (resulting, for example, from load changes and the incorporation of
smart grid technology). This is already a tricky problem of distributed and decentralized
control with just one microgrid; in the presence of many microgrids there is the potential
problem of synchronization of switching microgrids in and out of the main power grid. Simi-
lar problems occur in smart grids [64].

566



Nonlinearity 30 (2017) 558 C Bick and M Field

Asynchronous features of power grid networks include variation in connection and node
structure (separation, or islanding, of microgrids from main power grid), state dependence of
connection structure, synchronization and restarting events (during incorporation of microgrid
into main grid). o

Example 3.3 (Thresholds, spiking networks and adaptation). Many mathematical
models from engineering and biology incorporate thresholds. For networks, when a node at-
tains a threshold, there are often changes (addition, deletion, weights) in connections to another
nodes. For networks of neurons, reaching a threshold can result in a neuron firing (spiking)
and short term connections to other neurons (for transmission of the spike). For learning mech-
anisms, such as spike-timing dependent plasticity (STDP) [29] relative timings (the order of
firing) are crucial [17, 30, 53] and so each neuron, or connection between a pair of neurons,
comes with a ‘local clock’ that governs the adaptation in STDP. In general, networks with
thresholds, spiking and adaptation provide characteristic examples of asynchronous networks
where dynamics is piecewise smooth and hybrid—a mix of continuous and discrete dynamics.
Spiking networks also highlight the importance of efficient communication in large networks:
spiking induced connections between neurons are brief and low cost. There is also no oscil-
lator clock governing all computations along the lines of a single processor computer. These
examples all fit well into the framework of asynchronous networks but, on account of the back-
ground knowledge required, we develop the theory and formalism elsewhere [14]. o

Example 3.4 (Transport & production networks). We discuss transport networks
first. For simplicity, we work with a single transport mode: trains. Typically, trains have to be
scheduled to be in a station for overlapping times (stopping, restarting, connections and local
times) so that passengers can transfer between trains, or stop in a passing loop (so that trains
can pass on a single track line). In addition, a train can divide into two parts or two trains can
be combined (variation in node structure, stopping and synchronization event). Generally,
transport networks will have asynchronous features and exhibit state dependent connection
structure, local times and have a strong stochastic component (for example, in stopping and
restarting times). We develop a simple formal transport model in section 5 (and [13]) that il-
lustrates basic ideas and results in the theory of asynchronous networks but does not require
extensive background knowledge.

A simple example of a production network is a paint mixer. Assume a controller which
accepts inputs—requested colour—which, after computation to find tint weights (‘tint code’),
signals a request to inject selected tints according to the tint code into the base paint which is
then mixed. The output is a can of coloured and fully mixed paint. Dynamics plays a limited
role—except possibly at the mixing stage (for example, if there is a sensor that can detect
an acceptable level of mixing). For this network, there is a varying connection structure de-
termined by the signalling and tint injection. A characteristic feature of this, and many pro-
duction networks, is the large variation in time scales. Signalling will typically be very fast,
injection moderately fast and mixing rather slow. If the times of inputs to the controller are
stochastic (for example, follow a Poisson process), then there will be issues of queueing and
prioritization of inputs. If it is intended to maximize usage of the production facilities and
avoid long waits, then it is natural to suppose that there are several mixing units and the output
of the tint units is switched between mixer units according to their availability. Of course, the
paint mixer may be a small part of a much larger distributed production network for which we
can expect multiple time scales, switching between production units, changing the output of
production units, stopping or restarting units, etc. The control of large distributed production
systems will typically involve a mix of decentralized and centralized control.
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Synthesis of proteins at the cellular level can be viewed as a generalization of the paint
mixer model. We refer the reader to Alon [4] for background and more details, especially on
transcription networks. ¢

We summarize some of the key features of asynchronous networks illustrated by all of the
preceeding examples.

(1) Variable connection structure and dependencies between nodes. Changes in connection
structure may depend on the state of the system or be given by a stochastic process.

(2) Synchronization events associated with stopping or waiting states of nodes.

(3) Order of events may depend on the initialization of the system or stochastic effects.

(4) Dynamics is only piecewise smooth and there may be a mix of continuous and discrete
dynamics.

(5) Aspects involving function, adaptation and control.

(6) Evolution only defined for forward time—systems are non-reversible.

4. A Mathematical model for asynchronous networks

In this section we formalize the notion of an asynchronous network. Our focus is on determin-
istic (not stochastic) and continuous time asynchronous networks which are autonomous (no
explicit dependencies on time) and we use the term ‘asynchronous network’ as synonym for a
deterministic and autonomous continuous time asynchronous network.

4.1. Basic formalism for asynchronous networks

Consider a network N\ with k nodes, N, ..., N, and follow the conventions of section 2: each
node N; has phase space M;, and M = H;‘Zl M;—the network phase space. A network vector
field f on M is assumed to satisfy conditions (N1-3) and so determines a unique connection
structure C(f) € M (k) and associated network graph I (no self-loops).

Stopping, waiting, and synchronization are characteristic features of asynchronous net-
works. If nodes of a network are stopped or partially stopped, then node dynamics will be con-
strained to subsets of node phase space. We codify this situation by introducing a constraining
node Ny that, when connected to &;, implies that dynamics on N; is constrained. We give the
precise definition of constraint shortly (in section 4.3); for the present, the reader may regard
a constrained node as stopped—node dynamics is defined by the zero vector field. We only
allow connections Ny — N, i € k, and do not consider connections N; — N, i € k*. Henceforth
we usually always assume there is a constraining node and let A" = {Ny, M, ..., N;} denote the
set of nodes. We emphasize that the constraining node Ny has no dynamics and no associated
phase space. In a network with no constraints (there are no connections Ny — N;), the con-
straining node Ny plays no role and can be omitted. If we allow constraints, there may be more
than one type of constraint on a node N;.

Suppose that there are p; € N different constraints on the node N; ick. Set
P=(p....p) € Z’i and let M.(k; P) denote the space of k x (k 4 1) matrices o = (oy))ick,jek
such that

(1) (0y)ijex € M(k) (and so oy = 0,7 € K).
(@) apep.ick

If a € M.(k; P), we define the directed graph I}, by
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(1) T, has node set \V.
(2) For alli,j € k, N; - N; is an edge iff a;; = L
‘
(3) Np— N, is an edge iff a;o=0. We write Ny — N, if we need to specify the constraint
corresponding to £ € p,.

We usually abbreviate M.(k; P) to M.(k). Let @ € M.(k) denote the empty connection structure
(no edges).

If a € M.(k), let o denote the first column (co);cx of a. We have a natural projection
7 Mu(k) - M(k); a — o, defined by omitting the column o’. We write o € M.(k) uniquely as

a = (a).

The column vector o codifies the connections from the constraining node and o encodes the
connections between the nodes {M,, ..., Ni}.

Let o € M.(k). We provisionally define an a-admissible vector field f = (f, ...,f;) to be a
network vector field such that fori, j € k, i = j, f; depends on the state x; of N;iff a;; = 1. If there
is a connection Ny — N; (a;o = 0), then there is a nontrivial constraint on N;. An a-admissible
vector field has constrained dynamics if there are connections from the constraining node. If
a = &, nodes are uncoupled and unconstrained.

Definition 4.1 (Notation and assumptions as above).

(1) A generalized connection structure A is a (nonempty) set of connection structures on N
(2) An A-structure F is a set F = {£*|a € A} of network vector fields such that each £ € F
is a-admissible.

Interactions between nodes in asynchronous networks may vary and can be state or time
dependent or both. We focus on state dependence and assume interactions and constraints are
determined by the state of the network through an event map £: M — A.

Definition 4.2. Given a network A/, generalized connection structure A, A-structure F,
and surjective event map £ : M — A, the quadruple 91 = (N, A, F, £) defines an asynchro-
nous network.

The network vector field of 91 is given by the state dependent vector field F : M - TM
defined by

F(X) = f¥X(X), X e M.

Remarks 4.3.

(1) Subject to simple regularity conditions, which we give later, the network vector field F
will have a uniquely defined semiflow.

(2) In the sequel we often use the notation 91 as shorthand for the asynchronous network
N, A, F, &) (by extension, 91¢ will be shorthand for (M4, A%, F¢, £%), etc).

Example 4.4. Let k=2 and M; = M, = R x T. Suppose that dynamics of the uncoupled
node N; is given by the smooth vector field Vi(x;, 6;) = (f; (x;), w;), where £(0) =0, w; € R,i € 2.

Assume constrained dynamics for either node is defined on the invariant circle
{0} x T C R x T by the vector field Z;(x;, 6;) = (0, w;), i € 2. When both nodes are constrained
(x1 = » = 0), assume (constrained) coupling is defined by the vector field H = (H,, H,), where

Hi(x1, 01,2, 02) = (0, w; + k(6> — 01))
Hy(x1, 01,3, 62) = (0, ws + h(0) — 62)),
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and 4 : T — R is smooth. The 2-tori {(x,x%)} X T2 are invariant by the flow of H for all
(%, %) € R2. Revert to standard (uncoupled and unconstrained) dynamics when |6; — 6| < ¢,
where 0 < € < 1. We describe the network dynamics using asynchronous network formalism.

Take the generalized connection structure A = {&, oy, ap, B}, where o; = Ng—> N, i € 2,
andﬁ = N0—>1V]<—>N2<—NQ.

Take F = {f7|y € A}, where
2 = (W, V), £ = (Z,, W), 1 = (W, Z,), 17 = (H,, H»).

Define the event map & : (R x T)?> — A by

£(0,0,,0,6,) = B, if|0, — 05| > ¢
=, lf|91 — 92| <¢
8(0, 91, X2, 92) = O, if X = 0
€(x1, (91, O, 92) = n, if X1 #= 0
Ex, 01,0, 0,) = @, if xpp = 0.

Network dynamics is given by the vector field F(X) = £féX(X). Trajectories for F are built
from pieces of the trajectories of £2, £, £, and £0. Using the condition f;(0) =0, i € 2, we
see easily that F has a well-defined semiflow ®,(xy, 61, %, 6), which is continuous in time ¢ > 0
but is not necessarily continuous in (x, 0, %, 65). O

4.2. Local foliations

Conditions for a constrained node N; will be given in terms of foliations of open subsets of M;.
We start by recalling basic definitions on foliations (see [46] for a detailed review).

A p-dimensional smooth (always C* here) foliation £ of the m-dimensional mani-
fold W consists of a partition {L,|a € A} of W into connected sets, called leaves, such that
for every x € W, we can choose an open neighbourhood U of x and smooth embedding
1 : U— R" such that for each leaf L,, the components of ¢(L,NU) are given by equa-
tions x?T! = constant, ..., x" = constant. Each leaf of a foliation will be an immersed
p-dimensional submanifold of W. For our applications, we always assume leaves are properly
embedded closed submanifolds of W, p < m, and that the manifold W has finitely many con-
nected components. In general, a smooth foliation of the manifold W will consist of a smooth
foliation of each connected component of W such that the dimension of leaves is constant on
each connected component of W.

Examples 4.5.

(1) Every smooth nonsingular vector field on W defines a 1-dimensional smooth foliation of
W (‘flow-box’ theorem of dynamical systems). The leaves are trajectories of the vector
field.

(2) If W = A x B, where A and B are manifolds, we have the product foliations £(A) and
L(B) of W defined by L(A) = {A x {b}|b € B} and L(B) = {{a} x Bla € A}. Each leaf
L(A) is transverse to every leaf of £(B). More generally, foliations £, £ are transverse if
leaves are transverse. A foliation of W, even by compact 1-dimensional leaves, need not
have a transverse foliation. The best-known example is the Hopf fibration which defines
a foliation of S° into circles. O
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Suppose that £ is a p-dimensional smooth foliation of W with leaves {L,|a € A}. The
tangent bundle along the foliation T : . - W is the smooth vector sub-bundle of the tangent
bundle TW of W defined by

L= U T.L,C TW.

x€Ly, a€A

4.3. Constrained nodes and admissible vector fields

Following section 4.1, we assume N = {Ny, NV, ..., N}, where the nodes N; have phase space
M;,icek Fixak-tupleP = (p,....,p) € Z'jr. In what follows, we assume P = 0.

Definition 4.6 (Notation and assumptions as above). A family C = {(W, L£))|i € k}
is a constraint structure on N if, for all i € k with p; > 0,

(1) W, = {W!|£ € p,} is a family of nonempty open subsets of M;.
(2) L; = {L{|¢ € p;}, where L] is a smooth foliation of W

Remarks 4.7.

(1) If p; = 0, there are no constraints on N;.

) If p;=1, we set W; = (W, L;) and L; is a smooth foliation of the nonempty open subset
W; of M. If we allow the dimension of leaves to vary between different connected comp-
onents, and the families W, to consist of disjoint open subsets of M, i € k, then we can

reduce to the case p; < 1by taking W, = U[ Wf and £; to be the foliation determined on

W; by £i|Wf = L’f, ¢ € p;. For our applications, it is no loss of generality to assume that
W, always consists of disjoint open subsets of M;, i € k.

We can now give a precise definition of an «-admissible vector field when there are
constraints.

Definition 4.8. Fix a constraint structure C = {(W};, £;)|i €k} on N and let o € M.(k). A
smooth vector field f = (f;, ..., f;) on M is an a-admissible vector field if

(1) Fori,j €k, i=j,f;depends on x; iff aj; = 1.
(2) If ajo =€ >0, then f; is tangent to the smooth foliation £f at all points of Wf CM,.
Equivalently, f; |Wf defines a section of }Lf, the tangent bundle along the foliation £f.

Example 4.9. Suppose that p; =1 and a;o = 1 so that there is a constraining connec-
tion Np = N,. Let £ = (f,,....f;) be c-admissible, M; = R¢ and £; be an (£ — p)-dimension-
al foliation of M; with leaves given by x, = c, ..., x,, = ¢,. The components f?, f?’ of
Ji =( f}, ey ff) will be identically zero and the node J; is partially stopped on each leaf.
This is the situation described in example 4.4 where the 1-dimensional foliation of R x T is
{{x} x T|xeR}. ¢

Remark 4.10. Note that if Ny — N; < N, then the coupling from N; must respect constraints
on N; though now of course the dynamics on a leaf of £; will depend on the state of N;.

4.4. The event map

Let A be a generalized connection structure with constraint structure C = {(W,, L;)|i €k}.
Let £: M — A be an event map and recall £ is always assumed to be surjective.
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For each « € A, define the event set E* C M by
E° = {(XeM|EX) = a}.

The event sets { E%|a € A} partition the network phase space M. We require additional condi-
tions on the event map when there are constraints. These conditions relate the event sets to the
constraint structure C and are required because foliations are only locally defined.

Let m : M — M; denote the projection map onto the phase space of N;, i € k. Given i €k,
{ € p;, define

El= |J mEHC M.

{ar] io=10}
Definition 4.11. The event map £ : M — A is constraint regular if for alli € k, £ € p,, we have

E{ C W/

Henceforth we assume that event maps are constraint regular.

4.5. Asynchronous network with constraints

Definition 4.12. An asynchronous network 9t = (N, A, F, £), with constraint structure C,
consists of

(1) A finite set N'= {Ny, N, ..., N;} nodes with associated phase spaces M,, i € k.
(2) A generalized connection structure A C M.(k).

(3) An A-structure F = {f¢|« € A} consisting of admissible vector fields.

(4) A (constraint regular) event map £ : M — A.

Remark 4.13. If A consists of a single connection structure « (with or without constraints),
then F consists of one vector field f = f¢, with dependencies given by o. We recover a syn-
chronous network with dynamics defined by f and a fixed connection structure.

4.6. Network vector field of an asynchronous network
An asynchronous network 91 uniquely determines the network vector field F by

F(X) = £79(X), X € M. 3)

Remarks 4.14.

(1) We may give a discrete version of definition 4.12: each f* will be a network map
f*: M — M and dynamics is defined by the map F : M — M given by (3).

(2) Equation (3) defines a state dependent dynamical system. Similar structures have been
used in engineering applications (for example, [34]). We indicate in section 5.1.3 a rela-
tionship with Filippov systems (this is explored further in [12]). However, the notion of an
integral curve for an asynchronous network is generally different from that of a Filippov
system, see examples 4.17(2).

(3) The network vector field does not uniquely determine 4, £ or F. Usually, however, the
choice of A, £ and F is naturally determined by the problem. Sometimes it is convenient
to view the network vector field as the basic object and regard asynchronous networks as
being equivalent if they define the same network vector field.
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(4) Since the event sets { E®|« € A} partition M, the network vector field F only depends on
f*|E“. Rather than assume that f* is smooth on M, we could have required that each f®
was defined as smooth map in the sense of Whitney [65] on E® (and so extends smoothly
to M).

(5) Although the vector fields f* € F are assumed to satisfy (N1-3), this may not hold for
f*|E“, a € A. Sometimes, but nor always, there is an equivalent network O such that the
dependencies of each admissible vector field for 91" are not changed by restriction to the
corresponding event set.

4.7 Integral curves and proper asynchronous networks
We start with a definition of integral curve suitable for asynchronous networks.

Definition 4.15. Let 9 be an asynchronous network with network vector field F. An
integral curve or trajectory for F with initial condition Xo €M is a map ¢ : [0,T) > M,
T € (0, <], satisfying

(1) @(0) = X.

(2) ¢ is continuous.

(3) There exists a closed countable subset D of [0, 7) such that for every u € D, there exists
veDU{T}, v > u, such that

(@ (w,v)yND=@.
(b) ¢@is C'on (u, v) and /(1) = F(¢p(1)), 1 € (u, v).
(©) lim,_,, @'(t) = F(¢p(u)).

Remarks 4.16.

(1) It is routine to verify that if ¢/ : [0, S) — M is another integral curve with initial condi-
tion X, then ©¥» = ¢ on [0, min{S, T'}) (uniqueness). As a consequence we can define the
maximal integral curve ¢ : [0, Tiy.x) = M with initial condition X. In the sequel, integral
curves will be maximal unless otherwise indicated.

(2) If T = ¢ in the definition, the trajectory ¢ : R, — M is complete.

(3) The set D may have accumulation points in D—accumulation is always from the left on
account of condition (3a). In the examples we consider D will always be a finite set.

(4) Typically, for each u € D, there exists a € A such that &(¢(t)) = « for ¢ € (u,v) and
so ¢((u,v)) C E®. Condition (3c) implies that if &(p(u)) = =, we must have

£°(pw)) = £7(p(w)).

Without further conditions on the event map, the vector field F determined by an asynchro-
nous network 91 may not have integral curves through every point of the phase space.

Examples 4.17.

(1) Take event sets E' = {(x;,%)|x <0}, E>=R?\E!, and corresponding constant vector
fields f' = (1, —2), £ = (—1,0) (see figure 2(a)). Trajectories cannot be continued,
according to definition 4.15, once they meet x; = 0. One way round this problem is to
define a new event set E> = OE! and the sliding vector field f3 = f' + £2 = (0, —2). There
is then a complete integral curve through every point of R? and the corresponding semi-
flow ® : R?> x R, — R?is continuous. This approach is based on the Filippov construction
[27, chapter 2, p 50] where we take a vector field in the positive cone defined by f!, f?
(often the unique convex combination Af' + (1 — A\)f?) which is tangent to OE! = E>).
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(a) (b)

Figure 2. Integral curves for the network vector field may not be well defined (a) and
may differ from those given by the Filippov conventions (b).

(2) Take event sets F' = {(x;,%)|x1 = %}, F*> = {(x,%)|x = %}, and corresponding vector
fields f'(x;, ) = (1, —1), £2(x;, ) = (0,0) (see figure 2(b) and note that the event F>
models a collision, after which dynamics stops). Integral curves are defined for all initial
conditions in R? but the semiflow ® : R? x R, — R? will not be continuous on F2. Here
the Filippov construction gives the wrong network solution—the diagonal F? is regarded
as a removable singularity.

We discuss the relationship between asynchronous networks and Filippov systems further
in section 5.1.3; see also [12]. o

Definition 4.18. The asynchronous network 9t is proper if for all X € M, the maximal
integral curve through X is complete: ¢y : [0, 00) = M.

Remarks 4.19.

(1) If 91 is proper, network dynamics is given by a semiflow ® : M x R, — M. Although
®(X, ¢) will be continuous as a function of t € R, it need not be continuous as a function
of X € M (see examples 4.17(2)).

(2) In many cases of interest, some of the node phase spaces M; may be open domains
in R" with with OM; = @. Here there is the possibility that trajectories may exit M: if
¢ = (¢, ..., @) is a trajectory, there may exist i € k and a smallest s > 0 such that

oi(s) o lim ¢,(t) € OM;. The maximal domain for ¢ is necessarily [0, s). Under
additional hypotheses, it may be possible to extend ¢ to a complete trajectory by setting

F;=0onR"\ M, j € k (the jth component of ¢ is stopped when it meets the boundary of
M;). In this way, we can regard N as proper. We develop this point of view further in [13].

t—s_

Event sets are typically defined by analytic and algebraic conditions that reflect logical
conditions on the underlying dynamics.

Definition 4.20. Let 91 be an asynchronous network. The event structure {E%|a € A} of N
is regular if the event sets E® are all semianalytic subsets'? of M.

10 Defined locally by analytic equations and inequalities. We refer to [15, 31] for precise definitions and properties.
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Remark 4.21. For the examples in this paper, event sets will typically be semialgebraic—
defined by polynomial equalities and inequalities.

Definition 4.22. An asynchronous network 91 is amenable if

(1) The event structure { E*|« € A} is regular.
(2) If X€ E®, o€ A, there exists a maximal #(X) € (0, co] such that the integral curve ¢x
through X is defined on [0, #(X)) and

dx(t) € E%, t€]0,1X)).

(3) Either M; is compact without boundary or M; = R™ and vector fields have at most linear
growth on M;: 3a, b > 0 such that

IFFXON <a+blIX]l, XEM, a €A

Remarks 4.23.

(1) Condition (2) of definition 4.22 suggests that the vector field f* should in some sense be
tangent to E. The issue of tangency can be made precise using the regularity assump-
tion which implies that E has a locally finite stratification into submanifolds without
boundary (for example, the canonical Whitney regular stratification of each event set
[31, 51]). This allows us to unambiguously define tangency at points of E“ which do not
lie in the boundary of strata. Care is needed at points lying in the boundary of strata and
in the example below we indicate how the geometric structure of the event set can impose
strong constraints on associated vector fields.

(2) If an event set is a closed submanifold without boundary, it follows from definition 4.22(2)
that any trajectory that meets the event set will never leave the event set.

(3) In [13] we extend definition 4.22(3) to allow for trajectories to exit the domain and stop
(see remark 4.19(2)).

(4) We may extend the definition of amenability to include asynchronous networks which are
equivalent to an amenable network.

Examples 4.24. Take k=2, M, =M, =R.

(1) As event sets take the semialgebraic subsets of R? defined by

2
E'= {(x,0)]x <0}, E> = {(0,y)]y >0}, E° = R\ JE.

i=1

The event sets are neither open nor closed. We define associated vector fields £/, j € 2°, on
R? by

fl(x»)’) = (]’O)’ fz(xd’) = (O,_l)s fO :f] +f2

It is a simple exercise to verify that the network is amenable and proper but that the associ-
ated semiflow ® : R? x R, — R?is not continuous along E' or E (it is continuous at (0,0)).
(2) Suppose that the event set E! is the cusp defined by {(x,y) € R*|x=0, y> = x3} and
E? = R?\ E!. In this case any smooth (C' suffices) vector field on R? which is tangent to
E' must vanish at {(0,0)} (an example of such a vector field is (2ax,3ay), a € R). If we
require amenability, then all trajectories which meet E' will never leave E'. O
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Proposition 4.25. An amenable asynchronous network is proper.

Proof. We give details for the case when M is compact. Fix X € M. Suppose that
@, : 10, 5;) = M are forward trajectories for F through X, i € 2. Using uniqueness of solutions
of differential equations and definition 4.22(2), it is easy to see that ¢p; = ¢, on [0, s1) N [0, s2).
It follows that if we define

T = sup{¢|there is a trajectory ¥ : [0, 1) — M through X}

then we have a unique trajectory ¢ : [0, T) - M through X. If T = oo, we are done. But if
T < oo, then we can extend ¢ to [0, T] by ¢(T') = lim,_, ;_ ¢(¢) (remarks 4.23(3)). If ¢(T) € E*
then by definition 4.22(2), ¢ extends to [0, T+ #(¢(T))), where t(¢p(T)) > 0. This contradicts
the maximality of 7" and so 7' = oo. O

Remarks 4.26.

(1) Proposition 4.25 says nothing about the number of changes in the event map that occur
along a trajectory. Without further conditions, there may be a countable infinity of changes
with countably many accumulation points (see definition 4.15 and note the analogy with
Zeno-like behaviour [11]).

(2) As shown in examples 4.24(1), the semiflow given by proposition 4.25 need not be con-
tinuous (as a function of (X, 1)).

(3) Amenability is sufficient but not necessary for properness.

4.8. Semiflows for amenable asynchronous networks

Assume 91 is an amenable asynchronous network with network vector field F. For each o € A,
denote the flow of f* by .

Let XeM and ¢ : Ry - M be the maximal integral curve through X for F. If follows
from the definition of integral curve and amenability that there is a countable closed subset
D = D(X) of R, U {oo} such that for each u € D, there exist unique o € A, v = v(u) € D such
that

u,vYND =@, Ev) = a, ¢([u,v)) C E“.
(For &(u) = a we need amenability.)

Proposition 4.27. Let M be an amenable asynchronous network. Suppose that for all
X € M, D(X)is finite and set D(X) = {t}|0 = 1§ <1} < ... <ty <ty = oo} o) = &),
J€N". The semiflow ® : M x R, — M for F is given in terms of the flows ®“ by

By (1) = D (--- DU (O (X, 1), 1 — 1) -1 — 1),

where t € [t;(, t§+]), peN-.

Proof. Forte [ti,(, t§+ s <1>“§(Xp, t) is the solution to X'(¢) = f CY3’((X) with initial condition
X, = Px(1)). O
4.9. Asynchronous networks with additive input structure

A natural source of asynchronous networks comes from synchronous networks with additive
input structure. The event map can be either state dependent (with constraints) or stochastic
(see the following section).
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Fix a k node synchronous network A with additive input structure and network vector field
f=(,....fr) given by.

ei

¢
fixixj, ..., x;) = Fx)+ > Fi(x;,x), i€k 4)
s=1

On account of the additive input structure, it is natural to remove and later reinsert connections
between nodes.

Fori €k, let (W, £;) be the constraint defined by the 0-dimensional foliation of W, = M;. If
dynamics on N; is constrained, then dynamics is stopped: x; = 0. Let I" be the network graph
determined by (4) with associated 0-1 matrix v € M (k). Take P = (1, ..., 1) and let A C M.(k)
be a generalized connection structure such that

(L) Ol €A,
2) forall a« = (o¢°|ab) the matrix o’ defines a subgraph of I, and
(3) ajpe {0, 1} foralli ek, a € A.

For each « € A, define the -admissible vector field £ by

[, nx) = (1= aiO)(E(Xi) + > ayF(x;, Xi)), i€k,
s=1
and set F = {f*|a € A}. If we choose an event map £ : M — A and take F = {f*a € A},
then M = (N, A, F, £) is an asynchronous network. We refer to 0N as an asynchronous network
with additive input structure.
Forac€ A,ick, let J(i,) = {jloy; = 1,j €K} be the dependency set of f".

Definition 4.28. An asynchronous network 9 is input consistent if for any node N; and
a, f € A with dependency sets satisfying J(i, o) = J(i, 3) we have f' :fiﬁ.
As an immediate consequence of our constructions we have

Lemma 4.29. Asynchronous networks with additive input structure are input consistent.

In summary, if 91 is an asynchronous network with additive input structure all the admis-
sible vector fields are derived from the network vector field of a synchronous network.

4.10. Local clocks on an asynchronous network

In this section we describe local clocks on an asynchronous network. We give only brief
details sufficient for the examples we give later (the general set up appears in [14]). Roughly
speaking, a local clock will be associated to a set of nodes, or connections, and may be thought
of thought of as a stopwatch with time 7 € R... In particular, the local clock will run intermit-
tently and switching between on and off states will be determined by thresholds.

Fix a finite set of nodes N'= {Ny, V, ..., N} with associated phase spaces M;, i €K, a gen-
eralized connection structure A C M.(k) and a constraint structure C. Local clocks will be
defined in terms of strongly connected components of elements of A.

Suppose that « € A and let 3,7 be distinct strongly connected components of « with
respective node sets A C k, B C K. A local time 73, € R, will be defined on 3 (or the nodes A)
if there exists a connection N; - N, j € B,i € A.

Examples 4.30.

(1) The constraining node Ny is always a strongly connected component of ov. If « = Nop = N,
then we may take 0 = {N;}, v = {Ny} and define the local time 7; on N;.
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(2) It a = Ny = N; & N; < Ny, then we may take 3 = N, < N;, v = {No} and obtain the local
time 73 = 7; defined on N, N; (or N; < N)). <

Choose a set 7, ..., 7; of local times and set
T=R,={r=,....5)|% ... sERL}.

We extend the phase space of /' to M = M x 7. Given a € A, an a-admissible vector field
f* on M will be a smooth vector field of the form

X, 1) = (ff K1), o f L X T), By, L By),

where hy, ..., hy € {0, 1} are constant vector fields.
Just as before, we define an A-structure F, an event map £ : M — A and associated asyn-
chronous network (N, A, F, £). Our previous definitions and results continue to apply.

Example 4.31. Suppose k =1, N'= {Np, M}, and M; = R. Choose a smooth vector field
f: R - Rsuchthat1 > f(x) > 0 for all x € R. Define A = {&, @« = Ny = N;}. Define the local
time 7 € R, associated to o. Set M = R x R . Define F = {f2, £} by

2(x,7) = (f(x),0), fx,7) = (0,1), (x,7) € M.

Fix T > 0 and define the event map £ : M — A by

Ex,7)=a, ifx=0o0r7>T
=a, fx=0and7<T

The asynchronous network (N, A, F, £) is amenable. If we initialize at (xo,0), xo < 0, then the
system evolves until x = 0, stops for local time T seconds and then restarts. In practice, the
local clock is reset to zero after the system restarts. O

4.11. Stochastic event processes and asynchronous networks

Given node set AV, constraint structure C, generalized connection structure A and A-structure
F, an event process is a state dependent stochastic process & x) taking values in A.

Definition 4.32 (Notation as above). A stochastic asynchronous network I is a
quadruple (N, A, F, £), where £ = & x) is an event process.

In the most general case there are no restrictions on the process & x): there may be (sto-
chastic) dependence on time ¢ € R*, pure space dependence (£,xy = £(X)), or both. If & x)
is independent of time, then the event process reduces to an event map £ : M — A. If £, x) is
independent of X, then under mild conditions on &, such as assuming £ is Poisson, integral
curves on the stochastic asynchronous network (N, A, F, &) will be almost surely piecewise
smooth.

We discuss stochastic asynchronous networks in more detail in [14]. We give one simple
example here related to additive input structure.

Example 4.33. We follow the assumptions and notational conventions of section 4.9 and
assume given a synchronous network with additive input structure and dynamics given by (4).
Let A be a generalized connection structure and £ be a time dependent event process taking
values in A. Assume M is compact and the set of times ¢ty < #; < ... where the connection struc-
ture changes has Poisson statistics. The stochastic asynchronous network (N, A, F, £) is an
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Figure 3. Two trains on a single track railway line with a passing loop and stations.

example of a stochastic asynchronous networks with additive input structure. Almost surely,
trajectories will be piecewise smooth and defined for all positive time. o

5. Model examples of asynchronous networks

In this section, we describe two asynchronous networks using the formalism and ideas devel-
oped in the previous section. We refer also to [14], for the detailed description of an asynchro-
nous network modelling spiking neurons, adaptivity and learning (STDP).

5.1. A transport example: train dynamics

We use a simple transport example—a single track line with a passing loop—to illustrate
characteristic features of asynchronous networks in a setting requiring minimal structure and
background knowledge.

Consider two trains T}, %, travelling in opposite directions along a single track railway line;
see figure 3. We assume no central control and no communication between train drivers unless
both trains are in the passing loop.

Take as phase spaces for the trains the closed interval / = [—a, b], where a, b > 0. Suppose
the end points of 7 correspond to the stations A (at —a) and B (at b) and that the passing loop
is at 0 € 1. Assume that the passing loop is associated with a third station P.

The position of train ; at time >0 will be denoted by x;(¢) €I, i € 2. Suppose that
x1(0) = —a, x,(0) = b. Assume that, outside of the stations A, B, P, the velocity of the trains is
given by smooth vector fields V}, V; : I — R satisfying

Vikx) > 0> Vh(x), xe .

That is, %; is moving to the right and ¥, to the left. In order to pass each other, the trains must
enter the passing loop and stop at P.

Fix thresholds S, S, 5>, Ti, T, € R . Train T; will depart at time 7}, i € 2. We require that
trains have to be together in station P for time S and, additionally, the train T; must be in the
station for time S;, i € 2 (this is an additional condition on %; only if S; > S). The trains can
move out of the station when these thresholds are met. Note that the trains will not generally
leave the station at the same time if S; > S or S, > S. We model train dynamics by an asyn-
chronous network.

First we discuss connection structures. Associate the node N; with train ¥;, i € 2. Train %;
will be stopped at P only if there is a connection oy = Ny = N, i € 2. We only allow communi-
cation between trains when both trains are stopped at P. In this case, the connection structure
will be 8= Ny — Ny N, « N,. If either train is not stopped at P, there is no connection
between the trains.

As the drivers of the trains cannot communicate (unless both trains are in the station P) and
there is no central control, the times associated with the thresholds i, S, will be local times.
Specifically, when train T; stops at P, the driver’s stopwatch will be started. This will be a local
time 7; for ¥; and associated to the connection Ny — N;, When both trains are stopped at P, we
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use a third local time 7 = 73, associated to the connection N; <> N, (alternatively, the drivers
could synchronize their stopwatches but still the stopwatches may not run at the same speed).

We describe this setup using our formalism for asynchronous networks. As network phase
space we take

M= {X,T) = (0,077 Dunel, 7,7 7ER} =12 xR,
We define the generalized connection structure A = {«y, ap, 5, D} and let F be the
A-structure given by

X, 1) = (Vi(x), Vo)), (0,0, 0))

(X, ) = ((0, 2(x)), (1,0,0))

X, ) = (i), 0), (0, 1,0))

(X, 7) = ((0,0),(1,1,1))

We define the event map £ : M — A by
ap if(q=0,%2>0)V(x=0x<0)AFTE<S))
a fe=0,x<0)V((=01=20A(Mm<S))

B if=n=0A(T<)V{(M<S)A(1<S52))
& otherwise.

EX, 1) =

Here we have used the logical connectives V for or and A for and. Dynamics on the asyn-
chronous network Mt = (N, A, F, £) is given by the vector field F(X) = f£&®(X). Provided
that we initialize so that x;(0) < 0 < x(0), 71(0) = 7(0) = 7(0) = 0, it is easy to see that N is
amenable.

5.1.1. Initialization, termination and function. The network 91 has a function: each train has to
traverse the line to reach the opposite station. Thus we can regard 2 as a functional asynchro-
nous network. Formally, define initialization and termination sets by I = {—a}, I, = {b} and
F, = {b}, F, = {—a} respectively. We call [ = I} x [, and F = [F; X [F, the initialization and
termination sets for 9. The function of the network is to get from I to F in finite time.

Typically, the thresholds S, S, $», 71, T> € R will be chosen stochastically. For example, the
starting times 7j, T, according to an exponential distribution. If we initialize at (—a, Ty), (b, T3),
and take 71(0) = m(0) = 7(0) = 0, it is easy to verify that solutions will be defined and con-
tinuous for all positive time under the assumption that a train stops when it reaches its termi-
nation set.

5.1.2. Adding dynamics. The trains only ‘interact’ when both are stopped at P. We now add a
non-trivial dynamic interaction when the trains are stopped at P. To this end, we additionally
require that

(1) The drivers are running oscillators of approximately the same frequency (randomly ini-
tialized at the start of the trip).

(2) When both trains are at P, the oscillators are cross-coupled allowing for eventual approxi-
mate frequency synchronization.

(3) The trains cannot restart until the oscillators have phase synchronized to within ¢, where
0<e<05.

For example, fix w;, w; € R and define H() = ksin 276, 8 € T, where k > 0. Take as network
phase space M* = M x T2 Define vector fields h? = h® = h®2 and h” on M* by
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Figure 4. Dynamics on a one track line with passing loop.

h?(X, 7,0,6,) = (0,0, w, w))
(X, 7,01,6,) = (0,0,w; + H(0, — 6),ws + H(0) — 6,))

Define a new A-structure F* by
gz — ffa + hz’ g(xl — fo 4 hal, g(x2 — fm + haz’ g[} — fB 4 hﬁ’

where £2, fo1, £, f% ¢ F do not depend on (6}, §,) € T2 Modify the event map £ by requiring
that S(X, T, 0, 92) = 5 iff

1 =0=0A(T<S)V(|0i— 0 >) V(7 <S) A (1< 5))

In this case, for almost all initializations, the oscillators will eventually phase synchronize to

within ¢ provided that sin~!(|w; — w,|/2k) < 27e. In particular, if w; = wy, the oscillators will
synchronize unless |6,(0) — 62(0)| = 0.5.

5.1.3. Relations with Filippov systems. Assume all the thresholds of our model are zero.
Note that if § = S} = S, = 0, then there is no need for local clocks and we may model by
the asynchronous network 9t* = (N, A, F*, £%), where A* = {a, ap, @}, F* = {£2, £, £},
where £2(X) = (Vi(x), Vo()), £49X) = (0, Vo)), £%X) = (Vi(x1),0), and the event map £*
is defined by

o ifxy=0,%>0
S*(X): ay ifx=0,x<0
& otherwise.

We show dynamics for 91*in figure 4 under the initialization assumption that x;(0) < 0 < %(0).
Referring to the figure, trajectory 7 corresponds to train ¥, reaching P first and restarting
only when % reaches P. Train % reaches P first for the trajectory v. Regardless of which
train reaches P first, the ‘exit trajectory’ ¢ is always the same and so there is a reduction to
1-dimensional dynamics. If both trains arrive simultaneously at P, neither stops.

The dynamics shown in figure 4 is suggestive of a Filippov system [11, 27] and it is natu-
ral to ask whether there are connections between asynchronous network and Filippov sys-
tems. Set R? = {(x1, )| %2 < 0} and observe that dynamics on 91* is given by a continuous
semiflow ®* : R? x R, — R2. We define a Filippov system on R?, with continuous semiflow
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Figure 5. Dynamics for the Filippov system. Trajectories 1 and ¢ are unchanged;
trajectories x and £ correspond to one train reversing after the other train enters the
passing loop and are artifacts of the Filippov representation.

d:RZx R, - R2, such that ® = ®* on Rg. To this end we let Oy, i,j € {+, —} denote the
closed quadrants of R? (so @, — = {(x;,)|x > 0,2 < 0}, etc) and define smooth vector fields
on each quadrant by

V(i 0) = (=V(a), o), (a,%) € 04y
V. (g, 0) = (Vx), Va(n)), (x,%) €0y
V. _(a,0) = (V), —Vaw), () €Q
Vo (a,0) = (Va), Valw)), (,%) €0 4.

These vector fields uniquely define a smooth vector field V on the union of the interiors
of the quadrants. We extend V to a piecewise smooth vector field on R?\ {(0,0)} using the
Filippov conventions. Thus, we regard the x;-axis as a sliding line S', i € 2, and define V on
00 . NOQ _ = E* C §'to be the unique convex combination of V_, and V__ which is tan-
gent to S' (in this case (V_, + V__)/2). Finally define V(0,0) = (Vi(0), V5(0)). The piecewise
smooth vector field V has a continuous flow ® : R?> x R, — IR? (integral curves are defined
using the standard conventions of piecewise smooth dynamics—see [27]) and <I>|IR{§ = ®*. Of
course, the semiflow on RZ\ Rg does not have an interpretation in terms of trains on a line with
a passing loop (see figure 5).

In an asynchronous network, dynamics on event sets is given explicitly rather than by the
conventions used in Filippov systems. However, as we have shown, asynchronous networks
can sometimes be locally represented by a Filippov system (see [12] for more details and
greater generality). This relationship suggests the possibility of applying methods and results
from the extensive bifurcation theory of nonsmooth systems to asynchronous networks.

5.1.4. Combining and splitting nodes. We conclude our discussion of asynchronous net-
works modelling transport with a brief description of processes defined by combining or split-
ting nodes (a dynamical version of a Petri Net [19]). We consider the simplest cases of two
trains combining to form a single train or one train splitting to form two trains. We only give
details for the first case but note that both situations are easily generalized and also, like much
of what we have discussed above, apply naturally to production networks.
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Figure 6. Combining two trains into a single train.

Consider node sets N = {Ny, N, No} and N = {Np, Nj»}, where Nj, N5, Nj; have phase
space R and correspond to trains T, %5, T, respectively. We give a network formulation of
the event where trains %, ¥, are combined to form a single train %, (see figure 6). Fix vector
fields Vi, V5, Vi» on R and assume Vj(x), V5(x), V12(x) > 0 all x € R. Define generalized connec-
tions structures

A ={B, a1 =Ny=> N, =Ng= Np, 3= Noy= Ny = N, « Ny},
A = (3,7 = Ny— Nio}.
Assume a local clock with time 7 = 7j, that is shared between the connection 8 € A* and

v € Ab. Define network phase spaces for N4 N? to be M =R*x R, M’ =R xR,
respectively. Define the A% structure F¢ by

2 = ((Vi, W), 0), £ = ((0, V), 0), £422 = (K, 0), £+ = ((0,0), 1).

and the AP-structure F? by £22 = (;,,0), £ = (0, 1).

Fix thresholds S5, S} > 0. The threshold S gives the time taken to combine ¥} and %5, and S,
models the time %, spends in the station before leaving. Initialize N so that x;(0), %(0) < 0
and 7(0) = 0. The event map £4X, 7) is defined for x;, . <0 and 7 < S by

EX,T) =6, x,%<0
=a, 3=01<0
=ap, <0,%=0
=B n=x=071<58
The event map £%(x;2, 7) is defined for x;, > 0 and 7> S; by
Ein, ) =7, x2=0,7< S+ 5>
= @, otherwise

When 7 = S, we switch from network A/? to /2.
The splitting construction is similar except that we need to split the local clock for the
combined train into two clocks, one for each separated train.
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5.2. Power grids and microgrids

5.2.1 Power grids as asynchronous networks. We first consider an unrealistic, but simple
and instructive model that shows how asynchronous and event dependent effects can naturally
fit into the framework of power grids. In the following section, we describe how more realistic
models are obtained, their limitations, and where we might expect asynchronous network
models to be useful.

We use the simplest model [28] for power grid frequency stability that assumes generators
are synchronous, loads are synchronous motors and consider the network of mechanical phase
oscillators

07 + ;= P, — > kysin(6; — 6)), j€m, 5)
i=1

where (k) is a a symmetric matrix, all entries positive (zero is allowed). If b= 0 the sys-
tem can reach an equilibrium (P; < 0 corresponds to a load). Let I" be the (undirected) graph
determined by the matrix of connections given by (k;;). While the network described by (5) is
not asynchronous (and the main interest lies with the stability of the equilibrium solution), the
dynamics of real-world power grids are subject to factors that cannot be adequately described
by a synchronous model. For integrity of transmission lines, as well as system stability, it is
essential that the phase differences |§; — 6; are bounded away from 7/2. For example, we might
require |6; — 6;| < Tjj, where T;; € (0, 7/2) will be a threshold determining the safe operational
load for the transmission line. This leads to the construction of state dependent event maps
Ej: T"— (L, I'\{ij}}. If |6; — 6| > Tj;, then £;(0) = I'\ {i < j} and the transmission line
between nodes i and j is disconnected. Equation (5) is modified accordingly. Similarly, lines
or generators may be disconnected because of external events—such as lightening strikes or
mechanical breakdowns. These can be modelled using a stochastic event map.

As we indicated above, the model we have used is unrealistic (it is not true, for example,
that typical loads are synchronous motors). In the next section, we indicate how more realis-
tic models are obtained, their limitations, and where we might expect asychronous network
models to be useful.

5.2.2. Network-reduced model for power grids. We give an overview of the network-reduced
coupled phase oscillator model for power grids, largely based on Dorfler [20], and refer the
reader to [20, 55] for greater generality, alternative models, and the many details we omit. Apart
from describing the model, our goal is part cautionary (it is not evident that general theories of
synchronous or asynchronous networks have much to contribute to stability problems involv-
ing structural change), and part comparative with the models we describe later for microgrids.

Assume a power grid with synchronous generators, DC power sources, transmission lines
and various types of load. We assume a reference frequency wg for the power grid, usually
50Hz or 60Hz, and note that frequency synchronization is critical for the stability of the power
grid: our equations will be written nominally in terms of phases 6;(¢) but for the models, we
can always replace ;(¢) by 0;(t) — wgt to get the (same) equations for phase deviations that are
needed for stability theory (phase differences, but not absolute phases, matter).

Formally, assume given an undirected (connected) weighted graph G with node set V =n
and edge set £ C V2. Nodes will be partitioned as V = V;U V, U V3, where V) consists of syn-
chronous generators, V, are DC power sources, and V3 comprises various types of load (see
below and note we do not consider all types of load).

Each edge (i,j) € &, i = j, is weighted by a non-zero admittance ¥; € C and corresponds
to a transmission line. The imaginary part J(¥;;) is the susceptance of transmission line and
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R(Y;) is the conductance. Typically, a high voltage AC transmission line is regarded as loss-
less (R(Y;) = 0) and inductive (J(¥;) > 0). We allow self-loops i = j, these will correspond to
loads modelled as impedances to ground (nonzero ‘shunt admittances’).

To each node is associated a voltage phasor V; =|V;|e'% corresponding to phase 6; and mag-
nitude |V}| of the sinusoidal solution to the circuit equations.

For a lossless network, the power flow from node i to node j is given by a;;sin(6; — 6;),
where a;; =|V;|| Vj| 3(¥;) gives the maximal power flow (see Kundur [40, chapter 6]).

5.2.3. Synchronous generators. We assume dynamics of synchronous generators are given
by

n
]Wloi” + D,Qi = Pm,i + Z aij sin(0j — 9,‘), eV, (6)
j=1
where 6;, 0. are generator rotor angle and frequency, M;, D; >0 are inertia and damping
coefficients, and P,,; is mechanical power input.

5.2.4. DC/AC inverters: droop controllers. Each DC source in V), is connected to the AC grid
via a DC/AC inverter following a frequency droop control law which obeys the dynamics [62]

D,-GZ{ =F+ Z:la,-j sin(; — 6;), i € Va. (7
=

5.2.5. Frequency dependent loads. We assume the active power demand drawn by load i
consists of a constant term P;; > 0 and a frequency dependent term D;f, D; > 0, leading to
the power balance equation

Dﬂ; = —PI’,' + Z ajj sin(9j — 9,'), i€ V3J, (8)
=1

where V3 is the subset of V3 consisting of frequency dependent loads. Equation (8) is of the
same form as (7), and we may replace V, by V> U V3 and consider the general equation

n
D,H: = wj+ Z ajj sin(ﬁj —6), i€V, 9)
j=1
where wj; is positive if the node is a DC generator and negative if it is a frequency dependent
load.
We can similarly allow for loads which are synchronous motors, incorporate them in V)
and consider

n
MO} + Di0; = wi+ Y agsin(6; — 6,), i€ W, (10)
j=1
where wj; is positive if the node is a synchronous generator and negative if it is a synchronous
motor.

5.2.6. Constant current and constant admittance loads. We assume the remaining loads each
require a constant amount of current and have a shunt admittance (to ground). In this case we
have a current balance equation and, through the process of Kron reduction [22], may obtain
a reduced network the equations of which are
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MO/ + D0, = &; + Z da;sin(0; — 0; + <pij), i€V, (11)
j=1

Dﬂ: = w;+ Z d,‘j sin(Hj — 9,' + QOij), i€V, (12)
j=1
We refer to [21] for the explicit form of the coefficients in (11) and (12).

The original power grid network is typically sparse with many nodes—V}; is large. The
process of Kron reduction results in a much smaller network which will be all-to-all coupled
provided that the graph defined by V3 is connected [22]. However, even if the original trans-
mission lines are lossless, the phase shifts ¢;; will generally be non-zero and not necessarily
always small (we refer to [55, section 6.2 figure 4] for data from a real power grid network).
The presence of phase shifts can and does make it harder to frequency synchronize (11) and
(12); see also [50].

From the point of view of transmission line failure in a power grid, even if the removal of
an edge still results in a all-to-all coupled reduced network, many of the coupling coefficients
a;; will change. It is a hard problem, that goes beyond existing analytical theory for synchro-
nous and asynchronous networks, to get good insight into whether or not a breakdown will
destabilize the network (this is irrespective of phenomena like Braess’s paradox [56, 66]).

5.2.7 Microgrids. Assume given a stable power grid network, robust to ‘small’ changes in
power demand, and consider the problem of modelling a microgrid and its combination or
separation from the main grid. We outline structural and logical issues to make transparent the
connection with asynchronous networks and largely ignore dynamics so as to keep the model
simple and our discussion short (we refer to [23, 24, 62, 16] for more details and references on
microgrids and control from a large and growing literature in this area). Assume power gen-
eration in the microgrid is from DC generators (such as solar power or DC wind power) and
that V) = @ (most motor loads are not synchronous). Assume the microgrid is Kron reduced.

Unlike the power grid model described above, we allow directed (one way) connections
and a constraining node. Consider the simplified network N = {Ny, Ng, Ng, Np}, where the
nodes Np, Ng, Np correspond to a large capacity battery (buffer), a DC generator, and main
power grid respectively, and define subnetworks Ny = {Np, Ng} (microgrid) and Np = {Np}
(main power grid).

The battery acts as reserve storage or buffer for the microgrid; in particular to maintain
power in the event of intermittent loss of generated DC power or when the microgrid has been
separated ‘islanded’ from the main power grid. We suppose battery capacity B = B(z) € [0, By],
where By, corresponds to the battery being fully charged. We suppose that the DC generator
produces power O = O(t) € [0, Oy], where Oy, is the maximum power than can be generated.

The constraining node will play a role when the microgrid is islanded and is to be recon-
nected to the main power grid: either because the microgrid has insufficient power for the
microgrid loads or because the microgrid has an excess of available power some of which
can now be contributed to the main power grid. In either case a transition process needs to
be implemented where the droop controller for the DC/AC converter needs to bring the AC
output of the microgrid in precise voltage (phase, frequency and magnitude) synchronization
with the state of the power grid at the connection point(s) to the microgrid. Similarly, we can
constrain when the microgrid is to be islanded from the main grid so that the reduction in
power contributed to the main power grid is gradual and done over an appropriate time scale
S0 as not to destabilize the main power grid.
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Leaving aside the dynamics of islanding and combining the microgrid with the main power
grid, the generalized connection structures and control logic we need for management of the
microgrid are complex and depend on several thresholds which may need to be time depend-
ent—for example, if we use a time dependent model for the projected microgrid power load.
If the microgrid is islanded, we work with A, and use the generalized connection structure

.AMZ {azNg—)NB,ﬂ:NB—)Ng,@}.

The connection structure « corresponds to the DC generator having sufficient output to sup-
ply all power needed for the microgrid load and with a surplus which can be used to charge
the battery, 5 corresponds to battery and generator providing all necessary power for the
microgrid, and @ corresponds to the generator providing all needed power for the microgrid
and either there is surplus power available for battery charging or the battery is fully charged.
Thresholds that determine switching between these states are chosen so as to avoid ‘chatter-
ing’ in the control system.

If the microgrid is combined with the main power grid, this can be either because battery
and DC generators cannot provide sufficient power for the microgrid load or because the
microgrid has surplus power which can be contributed to the main power grid or because the
main power grid is stressed (possibly locally detected by frequency variation) and the battery
state of the microgrid is sufficiently high to allow a temporary power contribution to the main
grid. As generalized connection structure A we take the set of connection structures

Ng — Ny, Ng — Ny < Np,

N — NG < Ny, Nyy — Ng, Ny — Ng — Np,

Each of these connection structures has a natural interpretation. For example, Ny; —» Ng — Np
corresponds to the main power grid contributing to both the load of the microgrid and battery
charging while Ng — Ny < N means battery and DC generator are contributing power to
the main power grid as well as supplying all the power for the microgrid. On the other hand,
Ng — Ny means DC generated power, but not battery power, is being contributed to the main
power grid.

Of course, what we have described above is highly simplified as we have taken no account
of (1) multiple DC generators and batteries within a microgrid, or (2) multiple microgrids.
In the latter case, we need to take care that microgrid switching does not synchronize as this
could lead to large destabilizing changes in load on the main grid.

6. Products of asynchronous networks

We conclude with the definition of the product of asynchronous networks and give sufficient
conditions for an asynchronous network to decompose as a product of two or more asynchro-
nous networks. Although the methods we use are elementary, the study of products is illumi-
nating as it clarifies some subtleties in both the event map and the functional structure that are
not present in the theory of synchronous networks. These ideas play a central role in the proof
of the modularization of dynamics theorem in the companion paper [13].

6.1. Products
Given «, 3 € M(k), define oV 3 € M (k) (the join of v and [3) by
(aV B3); = max{ay, B;}, i,j €k

587



Nonlinearity 30 (2017) 558 C Bick and M Field

(the max-plus addition of tropical algebra [35]). We have oV @ = « for all « € M (k). If
A, B C M(k) are generalized connection structures, define the generalized connection struc-
ture A V B by

AVB={aVilac A, g€ B}.

Note that@ € AV Bif and only if & € AN B. Consequently, if & € AV B, then A, BC AV B.

Suppose that A is a nonempty subset of k containing k4 elements. There is a natural embed-
ding of M(k,) in M(k) defined by relabelling the matrices in M(k,) according to A. Specifically,
map the matrix (cyj); jea € M(ky) to the matrix & € M (k) defined by

N oy fori,jeA,
Olij = .
0 otherwise.

This embedding extends to an embedding of M.(k4) in M.(k) by

~ oo fori€A,
Q0 = .
0  otherwise.

Given disjoint nonempty subsets A,B of k, regard M.(k), M.(kp) as embedded in M.(k). Given
a € M.(ka), B € M.(kg), define

aVvpB=avQa eMk).

This extends to the join AV B of generalized connection structures on disjoint sets of
nontrivial nodes.

Let N'={Ny,...,N;} and A be a proper subset of k. Define N4 = {Nj|j€A"} and
My = [[;, M:. Denote points in M4 by X4. Suppose B = k \ A. We have N4 NN = {Ny} and
M, x Mg~ M. If C4, CP are constraint structures on A4, A8 respectively, let C = C* v C?
denote the induced constraint structure on N'—well defined since constraints depend only on
nodes and ANB = @.

More generally, given disjoint node sets N* = {N;|j€ A"}, NB = {Nj|j€B’}, we can
identify A,B with complementary subsets of k, where & is the total number of elements in
A U B, and then follow the conventions described above.

Definition 6.1 (Notation and assumptions as above). Given asynchronous networks
MX = (WX, AX, FX, £X), X € {A, B}, define the product 94 x M to be the asynchronous
network 9t = (N, A, F, £) where

(HN=NAUNE
2)C=CAv(CE
3) A=A AP,

(4) F= FAx FB = (S x fi|a e A%, Be AB), and
(5) € is defined by

EXa, Xp) = EAXp) V EB(Xp), for (X4, Xp) € My x Mp.

Remark 6.2. If 94, M? are proper (or amenable), then so is M4 x NE.

Lemma 6.3 (Notation of definition 6.1). The network vector field on MA x NB is
given by

F(X4, Xp) = (£ S(X), 15 X9(Xp)), (13)
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for all (X4, X5) € My x Mj,

Proof. Immediate from the definitions. O

6.2. Decomposability

Definition 6.4. An asynchronous network (N, A, F, £) is decomposable if it can be written

as a product of asynchronous networks. If the network is not decomposable, it is indecompos-
able.

Example 6.5. Suppose that A/ is a synchronous network with connection structure
a € M (k) and a-admissible network vector field f satisfying conditions (N1-3) of section 2.
Since « encodes the dependencies of f it is trivial that A" can be written as a product of two
synchronous networks iff the network graph T}, is disconnected. O
Our aim to find sufficient conditions on an asynchronous network for it to be decomposable.

Definition 6.6. The connection graph of the asynchronous network M = (N, A, F, £) is
the graph defined by the 0-1 matrix Iiy = \/a,6 Al

Lemma 6.7. If an asynchronous network N is decomposable, then the connection graph Iy
of M has at least two connected components.

Proof. If 91 is decomposable, then 91 = N4 x 9B, where A,B are proper complementary
subsets of k. Since there are no connections between nodes in N and N8, Tiy, has at least two
connected components. O

Remark 6.8. Lemma 6.7 gives a necessary condition for decomposability which is not suf-
ficient. There are two issues. First, the event map encodes information about spatial depend-
ence of node interactions that cannot be deduced from the connection graph. Second, the
admissible vector fields may have dependencies that are incompatible with decomposability.

Example 6.9. Let k =2, M; = M, = R. Define connection structures o; = Ny — N, i €2
and generalized connection structure A = {@, a4, ap, B = oy V iz }. Suppose the event map
is given by

ap, ifx<0,%=0

ap, ifxy=0,%>0

ﬂ, if X1 =X = 0,

o, otherwise

Ex,») =

In this case, A = A'V A2, where A = {@, o;}, i €2, and the network graph is disconnected.
However, there is no way to write (x;, %) as £/(x;) V £%(x,) as the event sets involving x; € M;
depend nontrivially on x, € M,. Hence the network cannot be decomposable or even equiva-
lent to a decomposable network whatever choice we make for admissible vector fields.

Suppose instead we define the event map by

q, ifxl =0,x2¢0
an, if=0,x=0
ﬁ, ifxl =X = 0
<, otherwise

EGn,x) =
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Inthis case A = A'V A?and we may write £ = £'V £2where £/(0) = a;, and Ei(x;) = @, x; =0,
i € 2. Suppose that £(x;, %) = (0, v2), £%(x;, %) = (v1, 0), £2(x1, ) = (v1, v3), where vy, v, = 0.
For the moment leave f” unspecified. Define F' = {£2, £}, where £2(x;) = v;, £%(x;) = 0,i € 2.
Observe that £2 = £7 x £5, f1 = £ x £ and £°2 = £ x £52 For (N, A, F, &) to be a product
we additionally require £7(x, %) = (F{(x1), £5(%)) = (0,0), all (x,%) € R% In particular, if
fﬁ(O, 0) = (0, 0), the network (V, A, F, £) is not even equivalent to a product network. How-
ever, if £5(0,0) = (0, 0), then the network (V, A, F, £) will be equivalent to a product network
if we redefine £ to be £ x £52 (this does not change the values of £ on E¥). o

6.3. Sufficient conditions for decomposability

Let 9% be an asynchronous network with k nodes and C be a proper connected component
of the connection graph L. Identify C with the nonempty subset of k corresponding to the
labels of the nodes in the component C. Let C = k\ C. Since C is a connected component of
[in, we can write each o € A uniquely as «« = a¢ V ag, where ac, ag are connection struc-
tures on A’ and N'C respectively. Set AC = {ac|a € A}. We have a well defined projection
e+ A — AC defined by () = ac.

Define the event map £ : M¢ x Mg — A€ by

EXe, Xe) = mc(EXe, X))

Definition 6.10. An asynchronous network M is structurally decomposable if for any con-
nected component C of the connection graph Iy, the map £€ is independent of X¢ € Mg (that

is, £€(X¢, Xg) = £'(X¢) where ' : M — A°).

Remark 6.11. Structural decomposability implies conditions on structural dependencies
that will generally be different from the dependencies of the network vector field. For exam-
ple, suppose a component C of the connection graph contains the node N;. If the node N is
stopped there may be a condition that N; will restart when the state of another node, say N,
attains a certain value. Necessarily, N, must lie in C (structural decomposability). However,
there need be no connection between N; and N, unless C contains exactly two nodes.
Suppose that 91 is structurally decomposable and that Iy has connected components
G,....,C; Set My = Mg, Al = 7c,(A), £ € q. By structural decomposability we may write
E&X) = \/56(1 EAXy) where £:M;— A'. For ac A, (cq, set as= mc(a)c A" and
E,, = (€Y (a) C M.
Lemma 6.12 (Notation as above). If 0 is structurally decomposable and Ty has
connected components G, ..., C,, then

E,=[] E, C [[ My forallac A
leq leq

Proof. An immediate consequence of structural decomposability. O

If C be a proper connected component of the connection graph Iy of an asynchronous
network 91, then by admissibility

fo = {3 x fg, forall a € A,
where f¢: Mc— TMc and f¢ : Mg » TMg.
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In order that 91 be decomposable, this decomposition has to be compatible with the projec-
tions ¢ : A — A€, 7z : A= AC. In particular, if connections in the set of nodes that are in C
are added or deleted, dynamics on M¢ is not affected.

Definition 6.13 (Notation as above). The asynchronous network 0N is dynamically de-
composable if for any connected component C of [y, we have

o =f]

for all o, 8 € A such that me(a) = e (05).

Lemma 6.14 (Notation as above.). Input consistent asynchronous networks are dynam-
ically decomposable. In particular, asynchronous networks with additive input structure are
dynamically decomposable.

Proof. Given i€k,a € A, let J(i,a) be the associated dependency set for node N;. If
a,f€ A and J(i,a) = J(i, §), then f7 :fl.ﬁ by input consistency. If i € C, where C is a
connected component of the network graph Iiy, then J(i, &) Nk C C for all a € A. Hence
J(i,a) = J(i, ac V ag) is independent of ag. Input consistency implies that flf"cv‘@ =fren
for all 3,y € Ag which yields dynamical decomposability. ]

We now state the main result of this section.

Theorem 6.15. Let 0Nt be a structurally and dynamically decomposable asynchronous
network with connection graph I'. If I" has connected components G, ..., C, then there exist
indecomposable asynchronous networks ML ..., M9 such that

N=Nx... xN.

Proof. For (eq, define A'={ox < m(@)|acA) and F'={fr< g : M-

TM/|a € A}. By dynamical indecomposability we have =TI, q £, for all o€ A. Con-
straint structures are defined for individual nodes and so factorise naturally. Let ELMy - A

be the event maps given by structural indecomposability. If we let 9t* be the asynchronous
network (N, A, ¢, £%, where N = {No} U (Ni|i € C;}, £ € q, then N = Ieq DI O

Our concluding result on decomposability is an immediate consequence of lemma 6.7 and
theorem 6.15.

Corollary 6.16. A structurally and dynamically decomposable asynchronous network N
is decomposable if and only if its connection graph has more than one nontrivial connected
component.

6.4. Factorization of asynchronous networks

Assume for this section that 0t = (N, A, F, £) is an asynchronous network which is not neces-
sarily structurally or dynamically indecomposable.

Definition 6.17. The asynchronous network 91 is a factor of 0N if there is an asynchronous
network 91 such that 9T = N x N2,
The proof of the next lemma is immediate from the definition of a product.
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Lemma 6.18. [fN'is a factor of M, then the connection graph Uy is a union of connected
components of Iy.

Remark 6.19. If 9t is indecomposable, the connection graph Iy may have more than one
component—unless 1 is structurally and dynamically indecomposable (theorem 6.15).

Proposition 6.20. Every asynchronous network Mt has a factorization [] . g N as aprod-
uct of indecomposable asynchronous networks. The factorization is unique, up to the order of
factors.

Proof. Existence is obvious. The uniqueness of factorization follows easily from lemma
6.18. 1
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