Tiny Nets: Project Report One
A Small Network with Industrial Dreams

Jake Read, Dougie Kogut, Nick Selby, Patrick Wahl

October 2017

1 Overview of Progress

Following our re-focus on Networked Control Systems,
and in response to the challenge posed by [Dan+14]
that ”existing solutions [for Networked Control Systems]
will not fulfill the future challenges in terms of relia-
bility, scalability, and flexibility”, we have designed a
new switched-medium network. The network can be
implemented on almost any micro-controller available to
systems engineers using a small software include, has a
configurable number of addresses, and uses back-pressure
routing to maintain low delivery times in the face of switch
congestion - a common problem in Switched Ethernet
implementations.

In this project, we will be particularly focused on the
network’s ability to dynamically re-route packages along
multiple routes in the face of different network congestion
scenarios. As discussed in our project proposal, Switched
Ethernet uses a Spanning Tree Protocol to cull connec-
tions in a graph, such that only one route to any given
endpoint exists. In the case that a switch is occupied
transmitting from one node, any other node below it must
wait before its message can be passed along to the rest of
the network.

While the associated wait-times are negligible in regular
internet traffic, their minimization is of critical importance
in Networked Control Systems. We propose a solution
where network switches maintain a list of possible routes
to any given packet’s final destination, and themselves use
real-time information about neighbouring switches’ cur-
rent states (idle, busy, or current buffer length) in order to
route packets intelligently.

2 TinyNet Implementation

Here we will briefly describe how TinyNet is implemented
physically, how it structures packets, and how switches in
TinyNet route messages.

2.1 Our PHY

We use UART Hardware to link nodes. UART is a ubiq-
uitous micro-controller peripheral - at least one port can
be found on almost any micro-controller on the market
today, and often many more are present. The micro-
controllers we have begun building with have five ports,
and micro-controllers in the same family have up to nine

ports, allowing for the development of radically intercon-
nected graphs. By using UART Hardware, we can bring
nearly any embedded system onto the network with only
two micro-controller pins and a software library. UART is
full-duplex, and requires little configuration.

DataRX DataTX
Data Data,
UART Hardware:

Ubiquitous microcontroller peripheral. Uses 8-bit words on a full-duplex connection,
typically modulated at the microcontroller’s logic level.

2.2 Our Packet

As opposed to Ethernet’s minimum size of 672 bits, we
implement a packet with a 48 bit minimum. This is of
primary importance for driving message delivery times
down, and we expect to approach Ethernet’s delivery time
without any of the purpose built ICs and electronics that
are found in Ethernet switches and endpoints.

For Ethernet, the Time to Transmit a message,

T — bits/packet
m T bitrate

672
Tmethernet - 100%106 = 6#’8

We use UART Hardware with a 2Mbps delivery rate, that
we may be able to increase to 4Mbps.

Tmuart = % = 24/1’5

It is clear to see that if time were spent to engineer
a higher bitrate into the physical layer, a new network
architecture using radically smaller packets could deliver
a major improvement in delivery time. We are interested

in using FPGA technology in order to implement higher
bitrates on our network.

Our Packet contains destination and source information,

10 bits, 0 - 1024 6 bits, 0-64 10 bits, 0 - 1024 6 bits, 0-64
Start Ack? | Destination # of Edges Source # of Bytes Payload

Address From Source |Address in Payload
KoK K K K kK K K K K K K 3K K K K kK K ok K 5K K K K K K K K K K K XK K K K K K K XK K memmm—m————————— 9
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 - 70

Figure 1: A TinyNet Packet. A Start Byte, Destination and Source Addresses, as well as the Number of Edges the Packet
has crossed prior to arriving at the switch, the Number of Bytes in the Payload, and of course the Payload itself.

80 00 20 7A 3F 3E
Destination MAC Address

80 00 20 20 3A AE
Source MAC Address

08 00

00 20 20 3A
EtherType

CRC Checksum

MAC Header
(14 bytes)

IP, ARP, etc.
payload
(

Data
(46 - 1500 bytes)

(4 bytes)

Ethernet Type Il Frame
(64 10 1518 bytes)

Figure 2: An Ethernet Packet.

a payload, and critically, 6 bits describing the number
of edges it has crossed before arriving at the current
switch. These additional 6 bits are critical in allowing the
switch to make informed decisions about where to deliver
the packet next, as will be discussed in the following
subsection.

2.3 Our Routing Protocol

Switched Ethernet’s Spanning Tree Protocol is designed
to eliminate all but one possible route to any given
endpoint. While this increases network simplicity, it
does not allow for any dynamic routing, and promotes
‘star’ topologies rather than truly distributed networks.
When an Ethernet switch is occupied with an incoming
transmission, other nodes that share the switch as a gate-
way to the network must wait before they are passed along.

We see this as a critical limitation to deterministic
message delivery. In order to switch packets in a dynamic
manner, we push a small amount of routing information
into the packet itself, in the form of a count of the edges
that that packet has traversed. The Edge Count value
begins at zero when the packet departs from it’s source,
and each switch in series increments the value by one.

To begin explaining how we expect to route packets,

we offer this simple example network, and an overview of
Routing, Address Discovery, and Acks.

1. Routing Tables:

W0 _

\ N\ e
®\@

oo

®

Figure 3: A example TinyNet graph. Switches have ad-
dresses (A, B, ... F) and Ports (Ey, ... E4).

Much like Ethernet, switches in a TinyNet build
routing tables. Each switch has a table with a list
of addresses, a list of the ports that packets from
those addresses have appeared on, and data about
the particular connection on that port - namely, how
many edges a packet crossed before it arrived on that
port. Switches pull this data out of packets they see
during operation. An example of an ideal routing
table for our example graph is show in Figure 4

2. Port Selection:
Data in this table is used when a switch receives
a packet. For example, if Switch E has previously
received a packet from A on Port F; with an edge

An Ideal Address Table
from Node E’s Memory
Address | Port Min. Edges
0
A 0 3
1 2
2 2
3 3
B 0 2
1 1
2 2
3 3
C 0 1
1 2
2 3
3 2

Figure 4: An ideal table for Node E from Figure 77.

count of 2, as well as a packet from A on Port Ej
with an edge count of 3, it can select port F; as the
ideal port to transmit a packet that is destined for A.

Back Pressure Routing:

Channels are all full-duplex. When a switches sate
updates (from idle to busy), it can deliver this data to
neighbouring switches, even when receiving a frame.
When a switch has a packet to deliver, it uses this
data to further inform its routing decision. If the
transmitter sees a busy switch upstream, it can loop
through its lookup table to determine where the next-
best switch to transmit on would be. In this way,
messages always travel along a route which is most

likely to take the minimum time.

4. Flood Forwarding and Discovery:

In the case that a switch receives a packet with a
destination address that is not yet contained in its
table, it forwards the packet to all other neighbouring
ports, so long as the packet has not already travelled
over a certain number of edges (this prevents packets
ringing through the network). The ’'Maximum
Number of Hops’ can be defined fluidly in a network
implementation, and can be designed such that any
message will always find at least one route to its
destination.

5. Acks:
When packets contain an Ack Flag, they return to
their sender (without a payload). Ack Requests and
Flood Packets allow new nodes to discover network
topology, by sending flood packets with ack-requests,
and recording the responses.

3 Current Hardware Progress

In order to test the success of our network, we are building
testbed hardware and firmware. We will use these circuits
first to measure Packet Delivery Times in the following
scenarios:

1. Between a pair of switches - a simple function of bi-
trate.

2. Across a chain of switches - a function of bitrate and
switching time - i.e. overhead processing time that
takes place within a switch.

3. Through a highly connected graph. Switches will have
to collect route information using flood-discovery al-
gorithms in order to route packets.

4. Through a highly connected graph, with increas-
ing cross-traffic. This is the critical measurement;
in existing Networked Control Systems, overall net-
work congestion contributes strongly to increased wait
times for individual messages.

So far, we have designed a switching circuit using an
Atmel XMEGA processor running at 48MHz and with
UART clocks of 2Mbps on each port. We have assembled
five of these switches, and have written firmware that uses
interrupt routines to buffer data on individual ports. We
have successfully passed bytes through a daisy-chain of
five nodes.

Going forwards, we will use a logic analyzer to time
packet transitions between switches as we continue to
develop firmware and switching protocols.

Figure 5: Five boards in our first switching testbed.

4 Simulation

In addition to building physical hardware, we have be-
gun implementation of a computer simulated network. By
coupling this simulation with physical experiments that
characterize hardware performance, we expect to be able
to extrapolate our results into networks with hundreds or
thousands of nodes.

References

[Dan+14] P. Danielis et al. “Survey on real-time com-
munication via ethernet in industrial automa-
tion environments” . In: Proceedings of the 2014
IEEE Emerging Technology and Factory Au-
tomation (ETFA). 2014, pp. 1-8. por: 10 .
1109/ETFA.2014.7005074.

Figure 6: A network switch, implemented on an XMega
Microprocessor, $5 total hardware cost.

