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Abstract
Real-world networks in technology, engineering and biology often exhibit 
dynamics that cannot be adequately reproduced using network models given 
by smooth dynamical systems and a fixed network topology. Asynchronous 
networks give a theoretical and conceptual framework for the study of network 
dynamics where nodes can evolve independently of one another, be constrained, 
stop, and later restart, and where the interaction between different components 
of the network may depend on time, state, and stochastic effects. This framework 
is sufficiently general to encompass a wide range of applications ranging from 
engineering to neuroscience. Typically, dynamics is piecewise smooth and 
there are relationships with Filippov systems. In this paper, we give examples of 
asynchronous networks, and describe the basic formalism and structure. In the 
following companion paper, we make the notion of a functional asynchronous 
network rigorous, discuss the phenomenon of dynamical locks, and present a 
foundational result on the spatiotemporal factorization of the dynamics for a 
large class of functional asynchronous networks.
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1.  Introduction

In this work we develop a theory of asynchronous networks and event driven dynamics. This 
theory constitutes an approach to network dynamics that takes account of features encountered 
in networks from modern technology, engineering, and biology, especially neuroscience. For 
these networks dynamics can involve a mix of distributed and decentralized control, adap-
tivity, event driven dynamics, switching, varying network topology and hybrid dynamics 
(continuous and discrete). The associated network dynamics will generally only be piecewise 
smooth, nodes may stop and later restart and there may be no intrinsic global time (we give 
specific examples and definitions later). Significantly, many of these networks have a function. 
For example, transportation networks bring people and goods from one point to another and 
neural networks may perform pattern recognition or computation.

Given the success of network models based on smooth differential equations and methods 
based on statistical physics, thermodynamic formalism and averaging (which typically lead to 
smooth network dynamics), it is not unreasonable to ask whether it is necessary to incorporate 
issues such as nonsmoothness in a theory of network dynamics. While nonsmooth dynamics 
is more familiar in engineering than in physics, we argue below that ideas from engineering, 
control and nonsmooth dynamics apply to many classes of network and that nonsmoothness 
often cannot be ignored in the analysis of network function. As part of these introductory 
comments, we also explain the motivation underlying our work, and describe one of our main 
results: the modularization of dynamics theorem.

Dedication to the memory of David Broomhead, 1950–2014

The genesis of this paper lies in a visit in 2010 by one us (MF) to work with Dave Broomhead 
at Manchester University. Dave was very interested in asynchronous processes and local 
clocks. During the visit, he came up with a 2 cell random dynamical systems model for the 
investigation of asynchronous dynamics and local time. This 2 cell model provided the seed 
and stimulus for the work described in this paper. Dave’s illness and untimely death sadly 
meant that our planned collaboration on this work could not be realized.

1.1. Temporal averaging

Consider the analysis of a network where links are added and removed over time. Two extreme 
cases have been widely considered in the literature. If the network topology switches rapidly, 
relative to the time scale of the phenomenon being considered, then we may be able to replace 
the varying topology by the time-averaged topology6. Providing that the network topology 
is not state dependent, the resulting dynamics will typically be smooth. On the other hand, 
if the topology changes slowly enough relative to the time scale of interest, we may regard 
the topology as constant and again we obtain smooth network dynamics. Either one of these 
approaches may be applicable in a system where time scales are clearly separated.

However, in many situations, especially those involving control or close to bifurcation, 
changes in network topology may play a crucial role in network function and an averaging 
approach may fail or neglect essential structure. This is well-known for problems in optimized 
control where solutions are typically nonsmooth and averaging gives the wrong solutions (for 
example, in switching problems using thermostats). For an example with variable network 
topology, we cite the effects of changing connection structure (transmission line breakdown), 

6 For example, if the input structure is additive—see section 2.
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or adding/subtracting a microgrid, on a power grid. Neither averaging nor the assumption 
of constant network structure are appropriate tools: we cannot average the problems away. 
Instead, we are forced to engage with an intermediate regime, where nonsmoothness (switch-
ing) and control play a crucial role in network function.

1.2.  Spatial averaging and network evolution

Much current research on networks is related to the description and understanding of complex 
systems [7, 18, 44, 48]. Roughly speaking, and avoiding a formal definition [44], we regard 
a complex system as a large network of nonlinearly interacting dynamical systems where 
there are feedback loops, multiple time and/or spatial scales, emergent behaviour, etc. One 
established approach to complex networks and systems uses ideas from statistical mechanics 
and thermodynamic formalism. For example, models of complex networks of interconnected 
neurons can sometimes be described in terms of their information processing capability and 
entropy [60]. These methods originate from applications to large interacting systems of par-
ticles in physics. As Schrödinger points out in his 1943 Trinity College, Dublin, lectures [61]

“...the laws of physics and chemistry are statistical throughout.”

In contrast to the laws of physics and chemistry, evolution plays a decisive role in the devel-
opment of complex biological structure. Functional biological structures that provided the 
basis for evolutionary development can be quite small—the nematode worm caenorhabditis 
elegans has 302 neurons. If the underlying small-scale structure still has functional relevance, 
an approach based on statistical averages to complex biological networks has to be limited; on 
the one hand, averaging over the entire network will likely ignore any small scale structure, 
and on the other hand statistical averages have little or no meaning for small systems— at 
least on a short time scale.

Reverse engineering large biological structures appears completely impractical; in part this 
is because of the role that evolution plays in the development of complex structure. Evolution 
works towards optimization of function, rather than simplicity, and is often local in character 
with the flavour of decentralized control. Similar issues arise in understanding evolved engi-
neering structures. For example, the internal combustion engine of a car in 1950 was a simple 
device, whose operation was synchronized through mechanical means. A modern internal 
combustion engine is structurally complex and employs a mix of synchronous and asynchro-
nous systems controlled by multiple computer processors, sensors and complex computer 
code.

1.3.  Reductionism

In nonlinear network dynamics, and complex systems generally, there is the question as to 
how far one can make use of reductionist techniques [5], [44, 2.5]. One approach, advanced 
by Alon and Kastan [39] in biology, has been the identification and description of relatively 
simple and small dynamical units, such as non-linear oscillators or network motifs (small net-
work configurations that occur frequently in large biological networks [18, chapter 19]). Their 
premise is that a modular, or engineering, approach to network dynamics is feasible: identify 
building blocks, connect together to form networks and then describe dynamical properties of 
the resulting network in terms of the dynamics of its components.

“Ideally, we would like to understand the dynamics of the entire network based on the 
dynamics of the individual building blocks.” Alon [4, page 27].

C Bick and M Field﻿Nonlinearity 30 (2017) 558
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While such a reductionist approach works well in linear systems theory, where a superpo-
sition principle holds, or in the study of synchronization in weakly coupled systems of non-
linear approximately identical oscillators [8, 32, 57, 58], it is usually unrealistic in the study 
of heterogenous networks modelled by a system of analytic nonlinear differential equations: 
network dynamics may bear little or no relationship to the intrinsic (uncoupled) dynamics 
of nodes.

1.4.  A theory of asynchronous networks

The theory of asynchronous networks we develop provides an approach to the analysis of 
dynamics and function in complex networks. We illustrate the setting for our main result with 
a simple example. Figure 1 shows the schematics of a network where there is only intermit-
tent connection between nodes7. We assume eight nodes N N, ,1 8… . Each node Ni will be given 
an initial state and started at time T 0i ⩾ . Crucially, we assume the network has a function: 
reaching designated terminal states in finite time—indicated on the right hand side of the 
figure. Nodes interact depending on their state. For example, referring to figure 1, nodes N1, 
N2 first interact during the event indicated by Ea. Observe there is no global time defined for 
this system but there is a partially ordered temporal structure: event Ec always occurs after 
event Ea but may occur before or after event Eb. We caution that while the direction of time is 
from left-to-right, there is no requirement of moving from left to right in the spatial variables: 
the phase space dimension for nodes could be greater than one and the initialization and ter-
minations sets could be the same. This example can be generalized to allow for changes in 
the number and type of nodes after each event. The intermittent connection structure we use 
may be viewed as an extension of the idea of conditional action as defined by Holland in the 
context of complex adaptive systems [36].

Our main result, stated and proved in the companion paper [13], is a modularization of 
dynamics theorem that yields a functional decomposition for a large class of asynchronous 
networks. Specifically, we give general conditions that enable us to represent a large class of 
functional asynchronous networks as feedforward functional networks of the type illustrated 
in figure 1. As a consequence, the function of the original network can be expressed explicitly 
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Figure 1.  A functional feedforward network with 8 nodes.

7 Figure 1 can be viewed as representing part of a threaded computer program. The events …E E, ,a h will represent 
synchronization events—evolution of associated threads is stopped until each thread has finished its computation 
and then variables are synchronized across the threads.
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in terms of uncoupled node dynamics and event function. Nonsmooth effects, such as changes 
in network topology through decoupling of nodes and stopping and restarting of nodes, are one 
of the crucial ingredients needed for this result. In networks modelled by smooth dynamical 
systems, all nodes are effectively coupled to each other at all times and information propagates 
instantly across the entire network. Thus, a spatiotemporal decomposition is only possible if 
the network dynamics is nonsmooth and (subsets of) nodes are allowed to evolve indepen-
dently of each other for periods of time. This allows the identification of dynamical units, each 
with its own function, that together comprise the dynamics and function of the entire network. 
The result highlights a drawback of averaging over a network: the loss of information about 
the individual functional units, and their temporal relations, that yield network function.

A functional decomposition is natural from an evolutionary point of view: the goal of an 
evolutionary process is optimization of (network) function. Thus, rather than asking how net-
work dynamics can be understood in terms of the dynamics of constituent subnetworks—the 
classical reductionist question—the issue is how network function can be understood in terms 
of the function of network constituents. Our result not only gives a satisfactory answer to 
Alon’s question for a large class of functional asynchronous networks but suggests an approach 
to determining key structural features of components of a complex system that is partly based 
on an evolutionary model for development of structure. Starting with a small well understood 
model, such as the class of functional feedforward networks described above, we propose look-
ing at bifurcation in the context of optimising a network function—for example, understanding 
the effect on function when we break the feedforward structure by adding feedback loops.

1.5.  Relations with distributed networks

An underlying theme and guide for our formulation and theory of asynchronous networks 
is that of efficiency and cost in large distributed networks. We recall the guidelines given by 
Tannenbaum & van Steen [63, p 11] for scalability in large distributed networks (italicised 
comments added):

	 •	No machine has complete information about the (overall) system state. (communication 
limited)

	 •	Machines make decisions based only on local information. (decentralized control)
	 •	Failure of one machine does not ruin the algorithm. (redundancy)
	 •	There is no implicit assumption of global time.

Of course, networks dynamics, in either technology, engineering or biology, is likely to involve 
a complex mix of synchronous and asynchronous components. In particular, timing (clocks, 
whether local or global) may be used to trigger the onset of events or processes as part of a weak 
mechanism for centralized control or resetting. Evolution is opportunistic—whatever works well 
will be adopted (and adapted) whether synchronous or asynchronous in character. In specific 
cases, especially in biology, it may be a matter of debate as to which viewpoint—synchronous 
or asynchronous—is the most appropriate. The framework we develop is sufficiently flexible 
to allow for a wide mix of synchronous and asynchronous structure at the global or local level.

1.6.  Past work

Mathematically speaking, much of what we say has significant overlap with other areas and 
past work. We cite in particular, the general area of nonsmooth dynamics, Filippov systems 
and hybrid systems (for example, [6, 11, 27, 52]) and time dependent network structures (for 
example, [9, 33, 37, 47]). While the theory of nonsmooth dynamics focuses on problems 
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in control, impact, and engineering, rather than networks, there is significant work study-
ing bifurcation (for example [10, 43, 49]) which is likely to apply to parts of the theory we 
describe. From a vast literature on networks and dynamics, we cite Newman’s text [54] for a 
comprehensive introduction to networks, and the very recent tutorial of Porter & Gleeson [59] 
which addresses questions related to our work, gives an overview and introduction to dynam-
ics on networks, and includes an extensive bibliography of past work.

1.7.  Outline of contents

After preliminaries in section 2, we give in section 3 vignettes (no technical details) of several 
asynchronous networks from technology, engineering, transport and neuroscience. In sec-
tion 4, we give a mathematical formulation of an asynchronous network with a focus on event 
driven dynamics, and constraints. We follow in section 5 with two more detailed examples of 
asynchronous networks including an illuminating and simple example of a transport network 
which requires minimal technical background yet exhibits many characteristic features of an 
asynchronous network, and a discussion of power grid models that indicates both the limita-
tions and possibilities of our approach. We conclude with a discussion of products of asyn-
chronous networks in section 6 that illuminates some of the subtle features of the event map. 
In the following paper [13], we develop the theory of functional asynchronous networks and 
give the statement and proof of the modularization of dynamics theorem.

2.  Preliminaries and generalities on networks

2.1.  Notational conventions

We recall a few mostly standard notational conventions used throughout. Let N denote the 
natural numbers (the strictly positive integers), Z+ denote the set of nonnegative integers, 

x x 0{ ⩾ }R R= ∈ |+ , and x x0 0( ) { }R R> = ∈ | ≠+ . Given n N∈ , define nn 1, ,{ }= … . Let 
nn 0, 1, ,• { }= …  and, more generally, for A N⊂  define A A 0• { }= ∪ .

2.2.  Network notation

We establish our conventions on network notation; we follow these throughout this work.
Suppose the network N  has k nodes, N N, , k1 … . Abusing notation, we often let N  denote 

both network and the set of nodes N N, , k1{ }… . Denote the state or phase space for Ni by Mi
8 

and set MM i ik= ∏ ∈ —the network phase space. Denote the state of node Ni by Mxi i∈  and the 
network state by X x x M, , k1( )= … ∈ .

Smooth dynamics on N  will be given by a system of ordinary differential equations (ODEs) 
of the form

f ix x x x k; , , , ,i i i j jei1
( )= … ∈′� (1)

where the components fi are at least C1 (usually C∞ or analytic) and the following conditions 
are satisfied.

	 (N1)	 For all i k∈ , j je1 i
<…<  are distinct elements of ik \ { } (and so ei  <  k).

		  Set J i j j k, , e1 i
( ) { }⊂= … , i k∈  (J(i) may be empty).

8 We assume the phase space for each node is a connected differential manifold—usually a domain in Rn or the 
n-torus, Tn.
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	 (N2)	� For each i k∈ , the evolution of Ni depends nontrivially on the state of Nj, j J i( )∈ , in 
the sense that there exists a choice of Mxi i∈  and Mx j js s

∈ , j J i js ( ) \ { }∈ , such that 
f x x x; , ,i i j jei1

( )…  is not constant as a function of xj.

	 (N3)	� We generally assume the evolution of Ni depends on the state of Ni. If we need to 
emphasize that fi does not depend on xi in the sense of (N2), we write f x x, ,i j jei1

( )… , 
if J i( )≠∅. If J i( ) = ∅, we regard the dependence of fi on xi as nontrivial iff fi is not 
identically zero and then write f xi i( ). Otherwise f 0i ≡ .

Remark 2.1.  Given network equations  (1) which do not satisfy (N1–3), we can first re-
define the fi so as to satisfy (N1). Next we remove trivial dependencies so as to satisfy (N2). 
Finally, we check for the dependence of fi on the internal state xi and modify the fi as neces-
sary to achieve (N3). If f 0i ≡ , we can remove the node from the network. Consequently, it is 
no loss of generality to always assume that (N1–3) are satisfied, with f 0i ≢ . A consequence 
is that any network vector field f f Tf M M, , :k1( ) →= …  can be uniquely written in the form 
(1) so as to satisfy (N1–3).

Let M(k) denote the space of k k×  0 -1 matrices ij i j k,( )β β= ∈  with coefficients in 0, 1{ } 
and 0iiβ = , all i k∈ . Each M k( )β∈  determines uniquely a directed graph Γβ with vertices 
N N, , k1 …  and directed edge N Nj i→  iff 1ijβ =  and i j≠ . The matrix β is the adjacency matrix 
of Γβ. We refer to β as a connection structure on N .

If Tf M M: →  is a network vector field satisfying (N1–3), then f determines a unique 
connection structure C M kf( ) ( )∈  with associated graph C f( )Γ . In order to specify the graph 
uniquely, it suffices to specify the set of directed edges.

We define the network graph f,( )Γ = Γ N  to be the directed graph C f( )Γ . Thus, f,( )Γ N  has 
node set N N, , k1{ }= …N  and a directed connection N Nj i→  will be an edge of Γ if and only if 
j i≠  and the dynamical evolution of Ni depends nontrivially on the state of Nj.

Remark 2.2.  Our conventions are different from formalisms involving multiple edge types 
(for example, see [3, 32] for continuous dynamics and [1] for discrete dynamics). We allow at 
most one connection between distinct nodes of the network graph and do not use self-loops: 
connections encode dependence.

2.2.1.  Additive input structure.  In many cases of interest, we have an additive input structure 
[26] and the components fi of f may be written

f F F ix x x x x x k; , , , , .i i j j i i
s

e

ij j i
1

ei

i

s s1
( ) ( ) ( )∑… = + ∈

=
� (2)

Additive input structure implies that there are no interactions between inputs N N N,j k i→ , as 
long as j k i, ≠ , j k≠ , and allows us to add and subtract inputs and nodes in a consistent way. 
We may think of Fx xi i i( )=′  as defining the intrinsic dynamics of the node.

Remarks 2.3. 

	(1)	Additive input structure is usually assumed for modelling weakly coupled nonlinear 
oscillators and is required for reduction to the standard Kuramoto phase oscillator model 
[25, 38, 42].
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	(2)	If we identify a null state z j
∗ for each node Nj, then the decomposition (2) will be unique if 

we require F z x, 0ij j i( )≡∗ 9. If a node is in the null state then it has no output to other nodes 
and is ‘invisible’ to the rest of the network. If we have an additive structure on the phase 
spaces Mi (for example, each Mi is a domain in nR  or an n-torus nT ) it is natural to take 
z 0i =
∗ .

	(3)	If Mi
nR=  or nT , i k∈ , and F Gx x x x,ij j i ij j is s s s

( ) ( )= − , i j k, s ∈ , the coupling is diffusive 
(see [1, section 2.5] for general phase spaces).

2.3.  Synchronous networks

Systems of ordinary differential equations like (1) give mathematical models for synchronous 
networks. By synchronous, we mean nodes are all synchronized to a global clock—the termi-
nology comes from computer science. Indeed, if each node comes with a local clock, then all 
the clocks can be set to the same time provided that the network is connected (we ignore the 
issue of delays, but see [45]). The synchronization of local clocks is essentially forced by the 
model and the connectivity of the network graph; nodes cannot evolve independently of one 
another unless the network is disconnected.

We recall some characteristic features of synchronous networks.

		 Global evolution: Nodes never evolve independently of each other: if the state of any 
node is perturbed, then generically the evolution of the states of the remaining nodes 
changes.

		 Stopped nodes: If a node (or subset of node variables) is at equilibrium or ‘stopped’ 
for a period of time, it will remain stopped for all future time. If a node has a non-zero 
initialization, it will never stop (in finite time).

		 Fixed connection structure: The connection structure of a synchronous network is fixed: 
it does not vary in time and is not dependent on node states: one system of ODEs suffices 
to model network dynamics.

		 Reversibility: Solutions are uniquely defined in backward time.

3.  Asynchronous networks: examples

In this section, we give several vignettes of asynchronous networks that illustrate the main 
features differentiating them from synchronous networks. We amplify two of these examples 
in section 5 after we have developed our basic formalism for asynchronous networks.

Example 3.1 (Threaded and parallel computation).  Threaded or parallelized compu-
tation provides an example of a discrete stochastic asynchronous network. Computation based 
on a single processor (or single core of a processor) proceeds synchronously and sequentially. 
The speed of the computation is dependent on the clock speed of the processor as the proces-
sor clock synchronizes the various steps in the computation. In threaded or parallel computa-
tion, computation is broken into blocks or ‘threads’ which are then computed independently of 
each other at a rate that is partly dependent on the clock rates of the processors involved in the 
computation (these need not be identical). At certain points in the computation, threads need 
to exchange information with other threads. This process involves stopping and synchronizing 

9 For identical phase spaces, assume inputs are asymmetric— ≠ �F Fij i , if ≠ �j . For symmetric inputs see [2, 32].
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(updating) the thread states: a thread may have to stop and wait for other threads to complete 
their computations and update data before it can continue with its own computation.

Threaded computation is non-deterministic: the running and stopping times of each thread 
are unpredictable and differ from run to run.

Each thread has its own clock (determined by its associated processor). Threads will be una-
ware of the clock times of other threads except during the stopping and synchronization events 
which can be managed synchronously (central control) or asynchronously (local control).

This example shows many characteristic features of an asynchronous network: nodes 
(threads) evolving independently of each other, and stopping, synchronization and restarting 
events. The network also has a function—transforming a set of initial data into a set of final 
data in finite time—and there is the possibility of incorrect code that can lead to a process that 
stops before the computation is complete (a deadlock), or errors where threads try to access a 
resource at the same time (race condition).� ♢

Example 3.2 (Power grids & microgrids).  A power grid consists of a connected net-
work of various types of generators and loads connected by transmission lines. A critical is-
sue for the stability of the power grid is maintaining tight voltage frequency synchronization 
across the grid in the presence of voltage phase differences between generators and loads and 
variation in generator outputs and loads. We refer to Kundur [39] for classical power grid 
theory, Dörfler et al [23] or Nishikawa & Motter [55], for some more recent and mathematical 
perspectives, and [41] for general issues and definitions on power system stability.

Historically, power grids have been centrally controlled and one of the main stability 
issues has been the effect on stability of a sudden change in structure—such as the removal 
of a transmission line, breakdown of a generator or big change in load. Detailed models 
of the power grid need to account for a complex multi-timescale stiff system. Typically 
stability has been analyzed using numerical methods. However, relatively simple classes 
of network models for power grids based on frequency and phase synchronization have 
been developed which are applicable for the analysis of some stability and control issues, 
especially those described in the next paragraph. We describe these models in more techni-
cal detail in section 5.

Interest has recently focused on renewable (small) energy sources in a power grid (for 
example, wind and solar power) and how to integrate microgrids based on renewable sources 
into the power grid using a mix of centralized and decentralized control. Concurrent with 
this interest is the issue of smart grids: modifying local loads in terms of the availability and 
real time costs of power. While the classical power grid model is of a synchronous network, 
though with asynchronous features such as the effects on stability of the breakdown of a 
connection (transmission line), these problems focus on asynchronous networks. For exam-
ple, given a microgrid with renewable energy sources such as wind and solar, time varying 
loads and buffers (large capacity batteries), how can the microgrid be switched in and out of 
the main power grid while maintaining overall system stability? In this case, switching will 
be determined by state (for example, frequency changes in the main power grid signifying 
changes in power demand or changes in the output of renewable sources or battery reserves) 
and stochastic effects (resulting, for example, from load changes and the incorporation of 
smart grid technology). This is already a tricky problem of distributed and decentralized 
control with just one microgrid; in the presence of many microgrids there is the potential 
problem of synchronization of switching microgrids in and out of the main power grid. Simi-
lar problems occur in smart grids [64].
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Asynchronous features of power grid networks include variation in connection and node 
structure (separation, or islanding, of microgrids from main power grid), state dependence of 
connection structure, synchronization and restarting events (during incorporation of microgrid 
into main grid).� ♢

Example 3.3 (Thresholds, spiking networks and adaptation).  Many mathematical 
models from engineering and biology incorporate thresholds. For networks, when a node at-
tains a threshold, there are often changes (addition, deletion, weights) in connections to another 
nodes. For networks of neurons, reaching a threshold can result in a neuron firing (spiking) 
and short term connections to other neurons (for transmission of the spike). For learning mech
anisms, such as spike-timing dependent plasticity (STDP) [29] relative timings (the order of 
firing) are crucial [17, 30, 53] and so each neuron, or connection between a pair of neurons, 
comes with a ‘local clock’ that governs the adaptation in STDP. In general, networks with 
thresholds, spiking and adaptation provide characteristic examples of asynchronous networks 
where dynamics is piecewise smooth and hybrid—a mix of continuous and discrete dynamics. 
Spiking networks also highlight the importance of efficient communication in large networks: 
spiking induced connections between neurons are brief and low cost. There is also no oscil-
lator clock governing all computations along the lines of a single processor computer. These 
examples all fit well into the framework of asynchronous networks but, on account of the back-
ground knowledge required, we develop the theory and formalism elsewhere [14].� ♢

Example 3.4 (Transport & production networks).  We discuss transport networks 
first. For simplicity, we work with a single transport mode: trains. Typically, trains have to be 
scheduled to be in a station for overlapping times (stopping, restarting, connections and local 
times) so that passengers can transfer between trains, or stop in a passing loop (so that trains 
can pass on a single track line). In addition, a train can divide into two parts or two trains can 
be combined (variation in node structure, stopping and synchronization event). Generally, 
transport networks will have asynchronous features and exhibit state dependent connection 
structure, local times and have a strong stochastic component (for example, in stopping and 
restarting times). We develop a simple formal transport model in section 5 (and [13]) that il-
lustrates basic ideas and results in the theory of asynchronous networks but does not require 
extensive background knowledge.

A simple example of a production network is a paint mixer. Assume a controller which 
accepts inputs—requested colour—which, after computation to find tint weights (‘tint code’), 
signals a request to inject selected tints according to the tint code into the base paint which is 
then mixed. The output is a can of coloured and fully mixed paint. Dynamics plays a limited 
role—except possibly at the mixing stage (for example, if there is a sensor that can detect 
an acceptable level of mixing). For this network, there is a varying connection structure de-
termined by the signalling and tint injection. A characteristic feature of this, and many pro-
duction networks, is the large variation in time scales. Signalling will typically be very fast, 
injection moderately fast and mixing rather slow. If the times of inputs to the controller are 
stochastic (for example, follow a Poisson process), then there will be issues of queueing and 
prioritization of inputs. If it is intended to maximize usage of the production facilities and 
avoid long waits, then it is natural to suppose that there are several mixing units and the output 
of the tint units is switched between mixer units according to their availability. Of course, the 
paint mixer may be a small part of a much larger distributed production network for which we 
can expect multiple time scales, switching between production units, changing the output of 
production units, stopping or restarting units, etc. The control of large distributed production 
systems will typically involve a mix of decentralized and centralized control.
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Synthesis of proteins at the cellular level can be viewed as a generalization of the paint 
mixer model. We refer the reader to Alon [4] for background and more details, especially on 
transcription networks.� ♢

We summarize some of the key features of asynchronous networks illustrated by all of the 
preceeding examples.

	(1)	Variable connection structure and dependencies between nodes. Changes in connection 
structure may depend on the state of the system or be given by a stochastic process.

	(2)	Synchronization events associated with stopping or waiting states of nodes.
	(3)	Order of events may depend on the initialization of the system or stochastic effects.
	(4)	Dynamics is only piecewise smooth and there may be a mix of continuous and discrete 

dynamics.
	(5)	Aspects involving function, adaptation and control.
	(6)	Evolution only defined for forward time—systems are non-reversible.

4.  A Mathematical model for asynchronous networks

In this section we formalize the notion of an asynchronous network. Our focus is on determin-
istic (not stochastic) and continuous time asynchronous networks which are autonomous (no 
explicit dependencies on time) and we use the term ‘asynchronous network’ as synonym for a 
deterministic and autonomous continuous time asynchronous network.

4.1.  Basic formalism for asynchronous networks

Consider a network N  with k nodes, N N, , k1 … , and follow the conventions of section 2: each 
node Ni has phase space Mi, and MM i

k
i1= ∏ = —the network phase space. A network vector 

field f on M is assumed to satisfy conditions (N1–3) and so determines a unique connection 
structure C M kf( ) ( )∈  and associated network graph C f( )Γ  (no self-loops).

Stopping, waiting, and synchronization are characteristic features of asynchronous net-
works. If nodes of a network are stopped or partially stopped, then node dynamics will be con-
strained to subsets of node phase space. We codify this situation by introducing a constraining 
node N0 that, when connected to Ni, implies that dynamics on Ni is constrained. We give the 
precise definition of constraint shortly (in section 4.3); for the present, the reader may regard 
a constrained node as stopped—node dynamics is defined by the zero vector field. We only 
allow connections N Ni0 → , i k∈ , and do not consider connections N Ni 0→ , ∈i k•. Henceforth 
we usually always assume there is a constraining node and let N N N, , , k0 1{ }= …N  denote the 
set of nodes. We emphasize that the constraining node N0 has no dynamics and no associated 
phase space. In a network with no constraints (there are no connections N Ni0 → ), the con-
straining node N0 plays no role and can be omitted. If we allow constraints, there may be more 
than one type of constraint on a node Ni.

Suppose that there are pi N∈  different constraints on the node Ni, i k∈ . Set 
p pP , , k

k
1( ) Z= … ∈ + and let M k P;•( ) denote the space of k k 1( )× +  matrices ij i jk k, •( )α α= ∈ ∈  

such that

	(1)	 M kij i j k,( ) ( )α ∈∈  (and so i k0,iiα = ∈ ).
	(2)	 pi i0

•α ∈ , i k∈ .

If M k P;•( )α∈ , we define the directed graph Γα by
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	(1)	Γα has node set N .
	(2)	For all i j k, ∈ , N Nj i→  is an edge iff 1ijα = .

	(3)	N Ni0 →  is an edge iff 0i0α ≠ . We write 
�

N Ni0 →  if we need to specify the constraint 
corresponding to pi∈� .

We usually abbreviate M k P;•( ) to M k•( ). Let M k•( )∅∈  denote the empty connection structure 
(no edges).

If M k•( )α∈ , let 0α  denote the first column i i k0( )α ∈  of α. We have a natural projection 
M k M k: •( ) → ( )π ; α α� �, defined by omitting the column 0α . We write M k•( )α∈  uniquely as

.0( )α α α= | �

The column vector 0α  codifies the connections from the constraining node and α� encodes the 
connections between the nodes N N, , k1{ }… .

Let M k•( )α∈ . We provisionally define an α-admissible vector field f ff , , k1( )= …  to be a 
network vector field such that for i j k, ∈ , i j≠ , fi depends on the state xj of Nj iff 1ijα = . If there 
is a connection N Ni0 →  ( 0i0α ≠ ), then there is a nontrivial constraint on Ni. An α-admissible 
vector field has constrained dynamics if there are connections from the constraining node. If 
α ∅= , nodes are uncoupled and unconstrained.

Definition 4.1 (Notation and assumptions as above).

	(1)	A generalized connection structure A is a (nonempty) set of connection structures on N .
	(2)	An A-structure F  is a set f{ }α= | ∈αF A  of network vector fields such that each f ∈α F  

is α-admissible.

Interactions between nodes in asynchronous networks may vary and can be state or time 
dependent or both. We focus on state dependence and assume interactions and constraints are 
determined by the state of the network through an event map M: →E A.

Definition 4.2.  Given a network N , generalized connection structure A, A-structure F , 
and surjective event map M: →E A, the quadruple ( )N = N A F E, , ,  defines an asynchro-
nous network.

The network vector field of N is given by the state dependent vector field TF M M: →  
defined by

F X f X X M, .X( ) ( )( )= ∈E

Remarks 4.3. 

	(1)	Subject to simple regularity conditions, which we give later, the network vector field F 
will have a uniquely defined semiflow.

	(2)	In the sequel we often use the notation N as shorthand for the asynchronous network 
, , ,( )N A F E  (by extension, aN  will be shorthand for , , ,a a a a( )N A F E , etc).

Example 4.4.  Let k  =  2 and M M1 2 R T= = × . Suppose that dynamics of the uncoupled 
node Ni is given by the smooth vector field V x f x, ,i i i i i i( ) ( ( ) )θ ω= , where f 0 0i ( )≠ , i Rω ∈ , i 2∈ .

Assume constrained dynamics for either node is defined on the invariant circle 
0{ } T R T⊂× ×  by the vector field Z x , 0,i i i i( ) ( )θ ω= , i 2∈ . When both nodes are constrained 

(x x 01 2= = ), assume (constrained) coupling is defined by the vector field H H H,1 2( )= , where

H x x h
H x x h

, , , 0,
, , , 0, ,

1 1 1 2 2 1 2 1

2 1 1 2 2 2 1 2

( ) ( ( ))
( ) ( ( ))
θ θ ω θ θ
θ θ ω θ θ

= + −
= + −
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and h : →T R is smooth. The 2-tori x x,1 2
2{( )} T×  are invariant by the flow of H for all 

x x,1 2
2( ) R∈ . Revert to standard (uncoupled and unconstrained) dynamics when 1 2 ⩽θ θ ε| − | , 

where 0 1ε< � . We describe the network dynamics using asynchronous network formalism.
Take the generalized connection structure , , ,1 2{ }α α β∅=A , where N Ni i0 →α = , i 2∈ , 

and N N N N0 1 2 0→ ↔ ←β = .

Take f{ }γ= | ∈γF A , where

V V Z V V Z H Hf f f f, , , , , , , .1 2 1 2 1 2 1 2
1 2( ) ( ) ( ) ( )= = = =α α β∅

Define the event map : 2( ) →R T×E A by

( )
⩽

( )  
( )  
( )  

θ θ β θ θ ε
θ θ ε

θ θ α
θ θ α
θ θ

∅

∅

= | − | >
= | − |
= ≠
= ≠
= ≠

E

E
E
E

x x
x x
x x x x

0, , 0, , if

, if

0, , , , if 0
, , 0, , if 0
, , , , if 0.

1 2 1 2

1 2

1 2 2 1 2

1 1 2 2 1

1 1 2 2 1 2

Network dynamics is given by the vector field F X f XX( ) ( )( )= E . Trajectories for F are built 
from pieces of the trajectories of f∅, f 1α , f 2α , and fβ. Using the condition f 0 0i ( )≠ , i 2∈ , we 
see easily that F has a well-defined semiflow x x, , ,t 1 1 2 2( )θ θΦ , which is continuous in time t 0⩾  
but is not necessarily continuous in x x, , ,1 1 2 2( )θ θ .� ♢

4.2.  Local foliations

Conditions for a constrained node Ni will be given in terms of foliations of open subsets of Mi. 
We start by recalling basic definitions on foliations (see [46] for a detailed review).

A p-dimensional smooth (always C∞ here) foliation L of the m-dimensional mani-
fold W consists of a partition L{ }α| ∈ Λα  of W into connected sets, called leaves, such that 
for every x W∈ , we can choose an open neighbourhood U of x and smooth embedding 

U: m→Rψ  such that for each leaf Lα, the components of L U( )φ ∩α  are given by equa-
tions  x xconstant, , constantp m1= … =+ . Each leaf of a foliation will be an immersed 
p-dimensional submanifold of W. For our applications, we always assume leaves are properly 
embedded closed submanifolds of W, p  <  m, and that the manifold W has finitely many con-
nected components. In general, a smooth foliation of the manifold W will consist of a smooth 
foliation of each connected component of W such that the dimension of leaves is constant on 
each connected component of W.

Examples 4.5. 

	(1)	Every smooth nonsingular vector field on W defines a 1-dimensional smooth foliation of 
W (‘flow-box’ theorem of dynamical systems). The leaves are trajectories of the vector 
field.

	(2)	If W A B= × , where A and B are manifolds, we have the product foliations A( )L  and 
B( )L  of W defined by A A b b B( ) { { } }= × | ∈L  and B a B a A( ) {{ } }= × | ∈L . Each leaf 
A( )L  is transverse to every leaf of B( )L . More generally, foliations , ′L L  are transverse if 

leaves are transverse. A foliation of W, even by compact 1-dimensional leaves, need not 
have a transverse foliation. The best-known example is the Hopf fibration which defines 
a foliation of S3 into circles.� ♢

C Bick and M Field﻿Nonlinearity 30 (2017) 558



571

Suppose that L is a p-dimensional smooth foliation of W with leaves L{ }α| ∈ Λα . The 
tangent bundle along the foliation W: →Lτ  is the smooth vector sub-bundle of the tangent 
bundle TW of W defined by

⊂=
α

α
∈ ∈Λα

⋃L T L TW .
x L

x

,

4.3.  Constrained nodes and admissible vector fields

Following section 4.1, we assume N N N, , , k0 1{ }= …N , where the nodes Ni have phase space 
Mi, i k∈ . Fix a k-tuple p pP , , k

k
1( ) Z= … ∈ +. In what follows, we assume P 0≠ .

Definition 4.6 (Notation and assumptions as above).  A family iC W k,i i{( ) }= | ∈L  
is a constraint structure on N  if, for all i k∈  with pi  >  0,

	(1)	 WW pi i i{ }= | ∈��  is a family of nonempty open subsets of Mi.
	(2)	 pi i i{ }= | ∈��L L , where i

�L  is a smooth foliation of Wi
�.

Remarks 4.7. 

	(1)	If pi  =  0, there are no constraints on Ni.
	(2)	If pi  =  1, we set WW ,i i i( )= L  and iL  is a smooth foliation of the nonempty open subset 

Wi of Mi. If we allow the dimension of leaves to vary between different connected comp
onents, and the families Wi to consist of disjoint open subsets of Mi, i k∈ , then we can 

reduce to the case p 1i ⩽  by taking =⋃�

�W Wi i  and iL  to be the foliation determined on 

Wi by Wi i i| =� �L L , pi∈� . For our applications, it is no loss of generality to assume that 
Wi always consists of disjoint open subsets of Mi, i k∈ .

We can now give a precise definition of an α-admissible vector field when there are 
constraints.

Definition 4.8.  Fix a constraint structure iC W k,i i{( ) }= | ∈L  on N  and let M k•( )α∈ . A 
smooth vector field f ff , , k1( )= …  on M is an α-admissible vector field if

	(1)	For i j k, ∈ , i j≠ , fi depends on xj iff 1ijα = .
	(2)	If 0i0α = >� , then fi is tangent to the smooth foliation i

�L  at all points of W Mi i⊂� . 
Equivalently, f Wi i|

� defines a section of iL�, the tangent bundle along the foliation i
�L .

Example 4.9.  Suppose that pi  =  1 and 1i0α =  so that there is a constraining connec-
tion N Ni0 → . Let f ff , , k1( )= …  be α-admissible, Mi R= �, and iL  be an p( )−� -dimension-
al foliation of Mi with leaves given by x c x c, ,r r p1 p1 = … = . The components f f, ,i

r
i
rp1 …  of 

f f f, ,i i i
1( )= … �  will be identically zero and the node Ni is partially stopped on each leaf. 

This is the situation described in example 4.4 where the 1-dimensional foliation of R T×  is 
x x{{ } }T R× | ∈ .� ♢

Remark 4.10.  Note that if N N Ni j0 → ← , then the coupling from Nj must respect constraints 
on Ni though now of course the dynamics on a leaf of iL  will depend on the state of Nj.

4.4. The event map

Let A be a generalized connection structure with constraint structure iC W k,i i{( ) }= | ∈L . 
Let M: →E A be an event map and recall E is always assumed to be surjective.
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For each α∈A, define the event set E M⊂α  by

E X M X .{ ( ) }α= ∈ | =α E

The event sets E{ }α| ∈α A  partition the network phase space M. We require additional condi-
tions on the event map when there are constraints. These conditions relate the event sets to the 
constraint structure C and are required because foliations are only locally defined.

Let MM:i i→π  denote the projection map onto the phase space of Ni, i k∈ . Given i k∈ , 
pi∈� , define

⊂π=
α α

α

| =
⋃

�

�

E E M .i i i

i0

( )
{ }

Definition 4.11.  The event map M: →E A is constraint regular if for all i k∈ , pi∈� , we have

⊂� �E Wi i

Henceforth we assume that event maps are constraint regular.

4.5.  Asynchronous network with constraints

Definition 4.12.  An asynchronous network ( )N = N A F E, , , , with constraint structure C, 
consists of

	(1)	A finite set N N N, , , k0 1{ }= …N  nodes with associated phase spaces Mi, i k∈ .
	(2)	A generalized connection structure M k•( )⊂A .
	(3)	An A-structure f{ }α= | ∈αF A  consisting of admissible vector fields.
	(4)	A (constraint regular) event map M: →E A.

Remark 4.13.  If A consists of a single connection structure α (with or without constraints), 
then F  consists of one vector field f f= α, with dependencies given by α. We recover a syn-
chronous network with dynamics defined by f and a fixed connection structure.

4.6.  Network vector field of an asynchronous network

An asynchronous network N uniquely determines the network vector field F by

F X f X X M, .X( ) ( )( )= ∈E� (3)

Remarks 4.14. 

	(1)	We may give a discrete version of definition 4.12: each fα will be a network map 
f M M: →α  and dynamics is defined by the map F M M: →  given by (3).

	(2)	Equation (3) defines a state dependent dynamical system. Similar structures have been 
used in engineering applications (for example, [34]). We indicate in section 5.1.3 a rela-
tionship with Filippov systems (this is explored further in [12]). However, the notion of an 
integral curve for an asynchronous network is generally different from that of a Filippov 
system, see examples 4.17(2).

	(3)	The network vector field does not uniquely determine A, E or F . Usually, however, the 
choice of A, E and F  is naturally determined by the problem. Sometimes it is convenient 
to view the network vector field as the basic object and regard asynchronous networks as 
being equivalent if they define the same network vector field.
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	(4)	Since the event sets E{ }α| ∈α A  partition M, the network vector field F only depends on 
Ef |α α. Rather than assume that fα is smooth on M, we could have required that each fα 

was defined as smooth map in the sense of Whitney [65] on Eα (and so extends smoothly 
to M).

	(5)	Although the vector fields f ∈α F  are assumed to satisfy (N1–3), this may not hold for 
Ef |α α, α∈A. Sometimes, but not always, there is an equivalent network N′ such that the 

dependencies of each admissible vector field for N′ are not changed by restriction to the 
corresponding event set.

4.7.  Integral curves and proper asynchronous networks

We start with a definition of integral curve suitable for asynchronous networks.

Definition 4.15.  Let N be an asynchronous network with network vector field F. An 
integral curve or trajectory for F with initial condition X M0∈  is a map T M: 0,[ ) →φ , 
T 0,( ]∈ ∞ , satisfying

	(1)	 X0 0( )φ = .
	(2)	φ is continuous.
	(3)	There exists a closed countable subset D of [0, T) such that for every u D∈ , there exists 

v D T{ }∈ ∪ , v  >  u, such that

	 (a)	 u v D,( )∩ = ∅.
	 (b)	 φ is C1 on (u, v) and t tF( ) ( ( ))φ φ=′ , t u v,( )∈ .
	 (c)	 t uFlimt u ( ) ( ( ))→ φ φ=′+ .

Remarks 4.16. 

	(1)	It is routine to verify that if S M: 0,[ ) →ψ  is another integral curve with initial condi-
tion X0, then ψ φ=  on S T0, min ,[ { }) (uniqueness). As a consequence we can define the 
maximal integral curve T M: 0, max[ ) →φ  with initial condition X0. In the sequel, integral 
curves will be maximal unless otherwise indicated.

	(2)	If T = ∞ in the definition, the trajectory M: →Rφ +  is complete.
	(3)	The set D may have accumulation points in D—accumulation is always from the left on 

account of condition (3a). In the examples we consider D will always be a finite set.
	(4)	Typically, for each u D∈ , there exists α∈A such that t( ( ))φ α=E  for t u v,( )∈  and 

so u v E,(( ))⊂φ α. Condition (3c) implies that if u( ( ))φ β α= ≠E , we must have 
u uf f( ( )) ( ( ))φ φ=α β .

Without further conditions on the event map, the vector field F determined by an asynchro-
nous network N may not have integral curves through every point of the phase space.

Examples 4.17. 

	(1)	Take event sets E x x x, 01
1 2 1{( ) ⩽ }= | , E E2 2 1\R= , and corresponding constant vector 

fields f 1, 21 ( )= − , f 1, 02 ( )= −  (see figure  2(a)). Trajectories cannot be continued, 
according to definition 4.15, once they meet x1  =  0. One way round this problem is to 
define a new event set E E3 1= ∂  and the sliding vector field f f f 0, 23 1 2 ( )= + = − . There 
is then a complete integral curve through every point of 2R  and the corresponding semi-
flow : 2 2→R R RΦ × +  is continuous. This approach is based on the Filippov construction 
[27, chapter 2, p 50] where we take a vector field in the positive cone defined by f f,1 2 
(often the unique convex combination f f11 2( )λ λ+ − ) which is tangent to E E1 3∂ = ).
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	(2)	Take event sets F x x x x,1
1 2 1 2{( ) }= | ≠ , F x x x x,2

1 2 1 2{( ) }= | = , and corresponding vector 
fields x xf , 1, 11

1 2( ) ( )= − , x xf , 0, 02
1 2( ) ( )=  (see figure  2(b) and note that the event F2 

models a collision, after which dynamics stops). Integral curves are defined for all initial 
conditions in 2R  but the semiflow : 2 2→R R RΦ × +  will not be continuous on F2. Here 
the Filippov construction gives the wrong network solution—the diagonal F2 is regarded 
as a removable singularity.

		 We discuss the relationship between asynchronous networks and Filippov systems further 
in section 5.1.3; see also [12].� ♢

Definition 4.18.  The asynchronous network N is proper if for all X M∈ , the maximal 
integral curve through X is complete: M: 0,X [ ) →φ ∞ .

Remarks 4.19. 

	(1)	If N is proper, network dynamics is given by a semiflow M M: →RΦ × + . Although 
tX,( )Φ  will be continuous as a function of t R∈ +, it need not be continuous as a function 

of X M∈  (see examples 4.17(2)).
	(2)	In many cases of interest, some of the node phase spaces Mi may be open domains 

in nR  with with Mi∂ ≠∅. Here there is the possibility that trajectories may exit M: if 
, , k1( )φ φ φ= …  is a trajectory, there may exist i k∈  and a smallest s  >  0 such that 

φ φ= ∈∂
−

s t Mlimi t s i i
def( ) ( )→ . The maximal domain for φ is necessarily [0, s). Under 

additional hypotheses, it may be possible to extend φ to a complete trajectory by setting 
F 0j≡  on Mn

j\R , j k∈  (the jth component of φ is stopped when it meets the boundary of 
Mj). In this way, we can regard N as proper. We develop this point of view further in [13].

Event sets are typically defined by analytic and algebraic conditions that reflect logical 
conditions on the underlying dynamics.

Definition 4.20.  Let N be an asynchronous network. The event structure E{ }α| ∈α A  of N 
is regular if the event sets Eα are all semianalytic subsets10 of M.

Figure 2.  Integral curves for the network vector field may not be well defined (a) and 
may differ from those given by the Filippov conventions (b).

10 Defined locally by analytic equations and inequalities. We refer to [15, 31] for precise definitions and properties.
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Remark 4.21.  For the examples in this paper, event sets will typically be semialgebraic—
defined by polynomial equalities and inequalities.

Definition 4.22.  An asynchronous network N is amenable if

	(1)	The event structure E{ }α| ∈α A  is regular.
	(2)	If EX∈ α, α∈A, there exists a maximal t X 0,( ) ( ]∈ ∞  such that the integral curve Xφ  

through X is defined on t X0,[ ( )) and

t E t t X, 0, .X( ) [ ( ))φ ∈ ∈α

	(3)	Either Mi is compact without boundary or Mi
niR=  and vector fields have at most linear 

growth on Mi: a b, 0∃ >  such that

a bf X X X M, , .i∥ ( )∥ ⩽ ∥ ∥ α+ ∈ ∈α A

Remarks 4.23. 

	(1)	Condition (2) of definition 4.22 suggests that the vector field fα should in some sense be 
tangent to Eα. The issue of tangency can be made precise using the regularity assump-
tion which implies that Eα has a locally finite stratification into submanifolds without 
boundary (for example, the canonical Whitney regular stratification of each event set  
[31, 51]). This allows us to unambiguously define tangency at points of Eα which do not 
lie in the boundary of strata. Care is needed at points lying in the boundary of strata and 
in the example below we indicate how the geometric structure of the event set can impose 
strong constraints on associated vector fields.

	(2)	If an event set is a closed submanifold without boundary, it follows from definition 4.22(2) 
that any trajectory that meets the event set will never leave the event set.

	(3)	In [13] we extend definition 4.22(3) to allow for trajectories to exit the domain and stop 
(see remark 4.19(2)).

	(4)	We may extend the definition of amenability to include asynchronous networks which are 
equivalent to an amenable network.

Examples 4.24.  Take k  =  2, M M1 2 R= = .

	(1)	As event sets take the semialgebraic subsets of 2R  defined by

E x x E y y E E, 0 0 , 0, 0 , .
i

i1 2 0 2

1

2

⋃{( ) } {( ) } \R= | < = | > =
=

		 The event sets are neither open nor closed. We define associated vector fields f j, j 2•∈ , on 
2R  by

f x y f x y f f f, 1, 0 , , 0, 1 , .1 2 0 1 2( ) ( ) ( ) ( )= = − = +

		 It is a simple exercise to verify that the network is amenable and proper but that the associ-
ated semiflow : 2 2→R R RΦ × +  is not continuous along E1 or E2 (it is continuous at (0,0)).

	(2)	Suppose that the event set E1 is the cusp defined by x y x y x, 0,2 2 3{( ) }R∈ | ≠ =  and 
E E2 2 1\R= . In this case any smooth (C1 suffices) vector field on 2R  which is tangent to 
E1 must vanish at {(0,0)} (an example of such a vector field is (2ax,3ay), a R∈ ). If we 
require amenability, then all trajectories which meet E1 will never leave E1.� ♢

C Bick and M Field﻿Nonlinearity 30 (2017) 558



576

Proposition 4.25.  An amenable asynchronous network is proper.

Proof.  We give details for the case when M is compact. Fix X M∈ . Suppose that 
s M: 0,i i[ ) →φ  are forward trajectories for F through X, i 2∈ . Using uniqueness of solutions 

of differential equations and definition 4.22(2), it is easy to see that 1 2φ φ=  on s s0, 0,1 2[ ) [ )∩ . 
It follows that if we define

T t t M Xsup there is a trajectory : 0, through{         [ ) →     }ψ= |

then we have a unique trajectory T M: 0,[ ) →φ  through X. If T = ∞, we are done. But if 
T<∞, then we can extend φ to [0, T] by T tlimt T( ) ( )→φ φ= −  (remarks 4.23(3)). If T E( )φ ∈ α 
then by definition 4.22(2), φ extends to T t T0,[ ( ( )))φ+ , where t T 0( ( ))φ > . This contradicts 
the maximality of T and so T = ∞.� □

Remarks 4.26. 

	(1)	Proposition 4.25 says nothing about the number of changes in the event map that occur 
along a trajectory. Without further conditions, there may be a countable infinity of changes 
with countably many accumulation points (see definition 4.15 and note the analogy with 
Zeno-like behaviour [11]).

	(2)	As shown in examples 4.24(1), the semiflow given by proposition 4.25 need not be con-
tinuous (as a function of tX,( )).

	(3)	Amenability is sufficient but not necessary for properness.

4.8.  Semiflows for amenable asynchronous networks

Assume N is an amenable asynchronous network with network vector field F. For each α∈A, 
denote the flow of fα by Φα.

Let X M∈  and M: →Rφ +  be the maximal integral curve through X for F. If follows 
from the definition of integral curve and amenability that there is a countable closed subset 
D D X( )=  of { }R ∪ ∞+  such that for each u D∈ , there exist unique α∈A, v v u D( )= ∈  such 
that

( ) ( ) ([ ))⊂φα∩ = ∅ ≠ αEu v D v u v E, , , , .

(For u( ) α=E  we need amenability.)

Proposition 4.27.  Let N be an amenable asynchronous network. Suppose that for all 

X M∈ , D X( ) is finite and set D t t t t tX 0j N N
X X X X

0 1 1( ) { }= | = < <…< < = ∞+
∞ , tj j

X X( ( ))φα = E , 
j N•∈ . The semiflow M M: →RΦ × +  for F is given in terms of the flows Φα by

t t t t t tX, , , ,pX
X X X X
1 2 1

p
X X X

1 0( ) ( ( ( ) ) )Φ = Φ Φ Φ − −α α α� �

where t t t,p p
X X

1[ )∈ + , p N•∈ .

Proof.  For t t t,p p
X X

1[ )∈ + , tX ,pp
X
( )Φα  is the solution to tX f Xp

X
( ) ( )=′ α  with initial condition 

tXp pX
X( )= Φ .� □

4.9.  Asynchronous networks with additive input structure

A natural source of asynchronous networks comes from synchronous networks with additive 
input structure. The event map can be either state dependent (with constraints) or stochastic 
(see the following section).
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Fix a k node synchronous network N  with additive input structure and network vector field 
f ff , , k1( )= …  given by.

f F F ix x x x x x k; , , , , .i i j j i i
s

e

ij j i
1

ei

i

s s1
( ) ( ) ( )∑… = + ∈

=
� (4)

On account of the additive input structure, it is natural to remove and later reinsert connections 
between nodes.

For i k∈ , let W ,i i( )L  be the constraint defined by the 0-dimensional foliation of W Mi i= . If 
dynamics on Ni is constrained, then dynamics is stopped: x 0i =′ . Let Γ be the network graph 
determined by (4) with associated 0 -1 matrix M k( )γ∈ . Take P 1, , 1( )= …  and let M k•( )⊂A  
be a generalized connection structure such that

	 (1)	 0( )γ| ∈A,
	 (2)	for all 0( )α α α= | �  the matrix α� defines a subgraph of Γ, and
	 (3)	 0, 1i0 { }α ∈  for all i k∈ , α∈A.

For each α∈A, define the α-admissible vector field fα by

f F F ix x x x x x k; , , 1 , , ,i i j j i i i
s

e

ij ij j i0
1

ei

i

s s s1
( ) ( ) ( ) ( )

⎛

⎝
⎜

⎞

⎠
⎟∑α α… = − + ∈α

=

and set f{ }α= | ∈αF A . If we choose an event map M: →E A and take f{ }α= | ∈αF A , 
then , , ,( )N = N A F E  is an asynchronous network. We refer to N as an asynchronous network 
with additive input structure.

For α∈A, i k∈ , let J i j j k, 1,ij
•( ) { }α α= | = ∈  be the dependency set of f i

α.

Definition 4.28.  An asynchronous network N is input consistent if for any node Ni and 

,α β∈A with dependency sets satisfying J i J i, ,( ) ( )α β=  we have f fi i=α β.
As an immediate consequence of our constructions we have

Lemma 4.29.  Asynchronous networks with additive input structure are input consistent.

In summary, if N is an asynchronous network with additive input structure all the admis-
sible vector fields are derived from the network vector field of a synchronous network.

4.10.  Local clocks on an asynchronous network

In this section  we describe local clocks on an asynchronous network. We give only brief 
details sufficient for the examples we give later (the general set up appears in [14]). Roughly 
speaking, a local clock will be associated to a set of nodes, or connections, and may be thought 
of thought of as a stopwatch with time Rτ∈ +. In particular, the local clock will run intermit-
tently and switching between on and off states will be determined by thresholds.

Fix a finite set of nodes N N N, , , k0 1{ }= …N  with associated phase spaces Mi, i k∈ , a gen-
eralized connection structure M k•( )⊂A  and a constraint structure C. Local clocks will be 
defined in terms of strongly connected components of elements of A.

Suppose that α∈A and let ,β γ be distinct strongly connected components of α with 
respective node sets A k⊂ , B k•⊂ . A local time , Rτ ∈β γ + will be defined on β (or the nodes A)  
if there exists a connection N Nj i→ , j B∈ , i A∈ .

		 Examples 4.30. 

	(1)	The constraining node N0 is always a strongly connected component of α. If N Ni0 →α = , 
then we may take Ni{ }β = , N0{ }γ =  and define the local time iτ on Ni.
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	(2)	If N N N Ni j0 0→ ↔ ←α = , then we may take N Ni j↔β = , N0{ }γ =  and obtain the local 
time ijτ τ=β  defined on N N,i j (or N Ni j↔ ).� ♢

Choose a set , , s1τ τ…  of local times and set

, , , , .s
s s1 1{ ( ) }R Rτ τ τ τ τ= = = … | … ∈+ +T

We extend the phase space of N  to M= ×M T . Given α∈A, an α-admissible vector field 
fα on M will be a smooth vector field of the form

f f h hf X X X, , , , , , , , ,k s1 1( ) ( ( ) ( ) )τ τ τ= … …α α α

where h h, , 0, 1s1 { }… ∈  are constant vector fields.
Just as before, we define an A-structure F , an event map : →E M A and associated asyn-

chronous network , , ,( )N A F E . Our previous definitions and results continue to apply.

Example 4.31.  Suppose k  =  1, N N,0 1{ }=N , and M1 R= . Choose a smooth vector field 
f : →R R such that f x1 0⩾ ( )>  for all x R∈ . Define N N, 0 1{ → }α∅= =A . Define the local 
time Rτ∈ + associated to α. Set R R= × +M . Define f f,{ }= α∅F  by

x f x x xf f, , 0 , , 0, 1 , , .( ) ( ( ) ) ( ) ( ) ( )τ τ τ= = ∈α∅ M

Fix T  >  0 and define the event map : →E M A by

x x T
x T

, , if 0 or
, if 0 and

( )     ⩾
   

τ τ
α τ
∅= ≠

= = <
E

The asynchronous network , , ,( )N A F E  is amenable. If we initialize at (x0,0), x0  <  0, then the 
system evolves until x  =  0, stops for local time T seconds and then restarts. In practice, the 
local clock is reset to zero after the system restarts.� ♢

4.11.  Stochastic event processes and asynchronous networks

Given node set N , constraint structure C, generalized connection structure A and A-structure 
F , an event process is a state dependent stochastic process t X,( )E  taking values in A.

Definition 4.32 (Notation as above).  A stochastic asynchronous network N is a  
quadruple N A F E, , ,( ), where t X,( )=E E  is an event process.

In the most general case there are no restrictions on the process t X,( )E : there may be (sto-
chastic) dependence on time t R∈ +, pure space dependence ( Xt X, ( )( ) =E E ), or both. If t X,( )E  
is independent of time, then the event process reduces to an event map M: →E A. If t X,( )E  is 
independent of X, then under mild conditions on E, such as assuming E is Poisson, integral 
curves on the stochastic asynchronous network , , , t( )N A F E  will be almost surely piecewise 
smooth.

We discuss stochastic asynchronous networks in more detail in [14]. We give one simple 
example here related to additive input structure.

Example 4.33.  We follow the assumptions and notational conventions of section 4.9 and 
assume given a synchronous network with additive input structure and dynamics given by (4). 
Let A be a generalized connection structure and E be a time dependent event process taking 
values in A. Assume M is compact and the set of times t t0 1< <… where the connection struc-
ture changes has Poisson statistics. The stochastic asynchronous network N A F E, , ,( ) is an 
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example of a stochastic asynchronous networks with additive input structure. Almost surely, 
trajectories will be piecewise smooth and defined for all positive time.� ♢

5.  Model examples of asynchronous networks

In this section, we describe two asynchronous networks using the formalism and ideas devel-
oped in the previous section. We refer also to [14], for the detailed description of an asynchro-
nous network modelling spiking neurons, adaptivity and learning (STDP).

5.1.  A transport example: train dynamics

We use a simple transport example—a single track line with a passing loop—to illustrate 
characteristic features of asynchronous networks in a setting requiring minimal structure and 
background knowledge.

Consider two trains ,1 2T T  travelling in opposite directions along a single track railway line; 
see figure 3. We assume no central control and no communication between train drivers unless 
both trains are in the passing loop.

Take as phase spaces for the trains the closed interval I  =  [−a, b], where a, b  >  0. Suppose 
the end points of I correspond to the stations A (at  −a) and B (at b) and that the passing loop 
is at I0∈ . Assume that the passing loop is associated with a third station P.

The position of train iT  at time t 0⩾  will be denoted by x t Ii( )∈ , i 2∈ . Suppose that 
x1(0)  =  −a, x2(0)  =  b. Assume that, outside of the stations A, B, P, the velocity of the trains is 
given by smooth vector fields V V I, :1 2 →R satisfying

V x V x x I0 , .1 2( ) ( )> > ∈

That is, 1T  is moving to the right and 2T  to the left. In order to pass each other, the trains must 
enter the passing loop and stop at P.

Fix thresholds S S S T T, , , ,1 2 1 2 R∈ +. Train iT  will depart at time Ti, i 2∈ . We require that 
trains have to be together in station P for time S and, additionally, the train iT  must be in the 
station for time Si, i 2∈  (this is an additional condition on iT  only if Si  >  S). The trains can 
move out of the station when these thresholds are met. Note that the trains will not generally 
leave the station at the same time if S1  >  S or S2  >  S. We model train dynamics by an asyn-
chronous network.

First we discuss connection structures. Associate the node Ni with train iT , i 2∈ . Train iT  
will be stopped at P only if there is a connection N Ni i0 →α = , i 2∈ . We only allow communi-
cation between trains when both trains are stopped at P. In this case, the connection structure 
will be N N N N0 1 2 2→ ↔ ←β = . If either train is not stopped at P, there is no connection 
between the trains.

As the drivers of the trains cannot communicate (unless both trains are in the station P) and 
there is no central control, the times associated with the thresholds S S,1 2 will be local times. 
Specifically, when train iT  stops at P, the driver’s stopwatch will be started. This will be a local 
time iτ for iT  and associated to the connection N Ni0 → , When both trains are stopped at P, we 

Figure 3.  Two trains on a single track railway line with a passing loop and stations.
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use a third local time 12τ τ=  associated to the connection N N1 2↔  (alternatively, the drivers 
could synchronize their stopwatches but still the stopwatches may not run at the same speed).

We describe this setup using our formalism for asynchronous networks. As network phase 
space we take

x x x x I IX, , , , , , , , , .1 2 1 2 1 2 1 2
2 3{( ) ( ) }R Rτ τ τ τ τ τ τ= = | ∈ ∈ = ×+ +M

We define the generalized connection structure , , ,1 2{ }α α β ∅=A  and let F  be the  
A-structure given by

τ
τ
τ
τ

=
=
=
=

α

α

β

∅ V x V x
V x

V x

f X
f X
f X

f X

, , , 0, 0, 0
, 0, , 1, 0, 0
, , 0 , 0, 1, 0

, 0, 0 , 1, 1, 1

1 1 2 2

2 2

1 1

1

2

( ) (( ( ) ( )) ( ))
( ) (( ( )) ( ))
( ) (( ( ) ) ( ))
( ) (( ) ( ))

We define the event map : →E M A by

x x x x S
x x x x S
x x S S S

X,

if 0, 0 0, 0
if 0, 0 0, 0
if 0
otherwise.

1 1 2 1 2 1 1

2 2 1 2 1 2 2

1 2 1 1 2 2
( )

 ( ) (( ⩽ ) ( ))
 ( ) (( ⩾ ) ( ))
 ( ) (( ) (( ) ( )))

⎧

⎨
⎪⎪

⎩
⎪⎪

τ

α τ
α τ
β τ τ τ
∅

=

= > ∨ = ∧ <
= < ∨ = ∧ <
= = ∧ < ∨ < ∧ <

E

Here we have used the logical connectives ∨ for or and ∧ for and. Dynamics on the asyn-
chronous network = N A F E, , ,( )N  is given by the vector field F X f XX( ) ( )( )= E . Provided 
that we initialize so that x x0 0 01 2( ) ( )< < , 0 0 0 01 2( ) ( ) ( )τ τ τ= = = , it is easy to see that N is 
amenable.

5.1.1.  Initialization, termination and function.  The network N has a function: each train has to 
traverse the line to reach the opposite station. Thus we can regard N as a functional asynchro-
nous network. Formally, define initialization and termination sets by a1 { }I = − , b2 { }I =  and 

b1 { }F = , a2 { }F = −  respectively. We call 1 2I I I= ×  and 1 2F F F= ×  the initialization and 
termination sets for N. The function of the network is to get from I to F in finite time.

Typically, the thresholds S S S T T, , , ,1 2 1 2 R∈ + will be chosen stochastically. For example, the 
starting times T T,1 2 according to an exponential distribution. If we initialize at a T b T, , ,1 2( ) ( )− , 
and take 0 0 0 01 2( ) ( ) ( )τ τ τ= = = , it is easy to verify that solutions will be defined and con-
tinuous for all positive time under the assumption that a train stops when it reaches its termi-
nation set.

5.1.2.  Adding dynamics.  The trains only ‘interact’ when both are stopped at P. We now add a 
non-trivial dynamic interaction when the trains are stopped at P. To this end, we additionally 
require that

	(1)	The drivers are running oscillators of approximately the same frequency (randomly ini-
tialized at the start of the trip).

	(2)	When both trains are at P, the oscillators are cross-coupled allowing for eventual approxi-
mate frequency synchronization.

	(3)	The trains cannot restart until the oscillators have phase synchronized to within ε, where 
0 0.5ε< < .

For example, fix ,1 2 Rω ω ∈  and define H k sin 2( )θ πθ= , Tθ∈ , where k  >  0. Take as network 
phase space 2T= ×∗M M . Define vector fields h h h1 2= =α α∅  and hβ on ∗M  by
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H H

h X 0 0

h X 0 0

, , , , , ,

, , , , , ,
1 2 1 2

1 2 1 2 1 2 1 2

( ) ( )
( ) ( ( ) ( ))
τ
τ
θ θ ω ω
θ θ ω θ θ ω θ θ

=
= + − + −β

∅

Define a new A-structure ∗F  by

g f h g f h g f h g f h, , , ,1 1 1 2 2 2= + = + = + = +α α α α α α β β β∅ ∅ ∅

where f f f f, , ,1 2 ∈α α β∅ F  do not depend on ,1 2
2( ) Tθ θ ∈ . Modify the event map E by requiring 

that X, , ,1 2( )τ θ θ β=E  iff

x x S S S01 2 1 2 1 1 2 2( ) (( ) ( ) (( ) ( )))τ θ θ ε τ τ= = ∧ < ∨ | − | > ∨ < ∧ <

In this case, for almost all initializations, the oscillators will eventually phase synchronize to 
within ε provided that ksin 2 21

1 2( / )ω ω πε| − | <− . In particular, if 1 2ω ω= , the oscillators will 
synchronize unless ( ) ( )θ θ| − | =0 0 0.51 2 .

5.1.3.  Relations with Filippov systems.  Assume all the thresholds of our model are zero. 
Note that if S S S 01 2= = = , then there is no need for local clocks and we may model by 
the asynchronous network , , ,( )N =∗ ∗ ∗ ∗N A F E , where , ,1 2{ }α α ∅=∗A , f f f, ,1 2{ }= α α∅∗F , 
where V x V xf X ,1 1 2 2( ) ( ( ) ( ))=∅ , V xf X 0, 2 2

1( ) ( ( ))=α , V xf X , 01 1
2( ) ( ( ) )=α , and the event map ∗E  

is defined by

x x
x xX

if 0, 0
if 0, 0
otherwise.

1 1 2

2 2 1( )
 
 

⎧
⎨
⎪

⎩⎪

α
α
∅

=
= >
= <∗E

We show dynamics for N∗ in figure 4 under the initialization assumption that x x0 0 01 2( ) ⩽ ⩽ ( ). 
Referring to the figure, trajectory η corresponds to train 2T  reaching P first and restarting 
only when 1T  reaches P. Train 1T  reaches P first for the trajectory ν. Regardless of which 
train reaches P first, the ‘exit trajectory’ φ is always the same and so there is a reduction to 
1-dimensional dynamics. If both trains arrive simultaneously at P, neither stops.

The dynamics shown in figure 4 is suggestive of a Filippov system [11, 27] and it is natu-
ral to ask whether there are connections between asynchronous network and Filippov sys-
tems. Set x x x x, 02

1 2 1 2{( ) ⩽ }R = |�  and observe that dynamics on N∗ is given by a continuous 
semiflow : 2 2→R R RΦ ×∗

+� �. We define a Filippov system on 2R , with continuous semiflow 

Figure 4.  Dynamics on a one track line with passing loop.
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: 2 2→R R RΦ × + , such that Φ = Φ∗ on 2R�. To this end we let Qij, i j, ,{ }∈ + −  denote the 
closed quadrants of 2R  (so Q x x x x, 0, 01 2 1 2{( ) ⩾ ⩽ }= |+− , etc) and define smooth vector fields 
on each quadrant by

x x V x V x x x Q
x x V x V x x x Q
x x V x V x x x Q
x x V x V x x x Q

V
V
V
V

, , , ,
, , , ,
, , , ,
, , , , .

1 2 1 2 2 1 2

1 2 1 2 2 1 2

1 2 1 2 2 1 2

1 2 1 2 2 1 2

( ) ( ( ) ( )) ( )
( ) ( ( ) ( )) ( )
( ) ( ( ) ( )) ( )
( ) ( ( ) ( )) ( )

= − ∈
= ∈
= − ∈
= ∈

++ ++

+− +−

−− −−

−+ −+

These vector fields uniquely define a smooth vector field V on the union of the interiors 
of the quadrants. We extend V to a piecewise smooth vector field on 0, 02 \ {( )}R  using the 
Filippov conventions. Thus, we regard the xi-axis as a sliding line Si, i 2∈ , and define V on 

Q Q E S12⊂∂ ∩∂ = α
−+ −−  to be the unique convex combination of V−+ and V−− which is tan-

gent to S1 (in this case V V 2( )/+−+ −− ). Finally define V VV 0, 0 0 , 01 2( ) ( ( ) ( ))= . The piecewise 
smooth vector field V has a continuous flow : 2 2→R R RΦ × +  (integral curves are defined 
using the standard conventions of piecewise smooth dynamics—see [27]) and 2RΦ| = Φ∗� . Of 
course, the semiflow on 2 2\R R� does not have an interpretation in terms of trains on a line with 
a passing loop (see figure 5).

In an asynchronous network, dynamics on event sets is given explicitly rather than by the 
conventions used in Filippov systems. However, as we have shown, asynchronous networks 
can sometimes be locally represented by a Filippov system (see [12] for more details and 
greater generality). This relationship suggests the possibility of applying methods and results 
from the extensive bifurcation theory of nonsmooth systems to asynchronous networks.

5.1.4.  Combining and splitting nodes.  We conclude our discussion of asynchronous net-
works modelling transport with a brief description of processes defined by combining or split-
ting nodes (a dynamical version of a Petri Net [19]). We consider the simplest cases of two 
trains combining to form a single train or one train splitting to form two trains. We only give 
details for the first case but note that both situations are easily generalized and also, like much 
of what we have discussed above, apply naturally to production networks.

Figure 5.  Dynamics for the Filippov system. Trajectories η and φ are unchanged; 
trajectories κ and ξ correspond to one train reversing after the other train enters the 
passing loop and are artifacts of the Filippov representation.
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Consider node sets N N N, ,a
0 1 2{ }=N  and N N,b

0 12{ }=N , where N N N, ,1 2 12 have phase 
space R and correspond to trains ,1 2T T , 12T  respectively. We give a network formulation of 
the event where trains ,1 2T T  are combined to form a single train 12T  (see figure 6). Fix vector 
fields V V V, ,1 2 12 on R and assume V x V x V x, , 01 2 12( ) ( ) ( )>  all x R∈ . Define generalized connec-
tions structures

N N N N N N N N

N N

, , , ,

, .

a

b

1 0 1 2 0 2 0 1 2 2

0 12

{ → → → ↔ ← }
{ → }
α α β
γ

∅
∅

= = = =
= =

A

A

Assume a local clock with time 12τ τ=  that is shared between the connection aβ∈A  and 
bγ∈A . Define network phase spaces for aN , bN  to be a 2R R= × +M , b R R= × +M  

respectively. Define the aA -structure aF  by

V V V Vf f f f, , 0 , 0, , 0 , , 0 , 0, 0 , 1 .a a a a,
1 2

,
2

,
1

,1 2(( ) ) (( ) ) ( ) (( ) )= = = =α α β∅

and the bA -structure bF  by Vf f, 0 , 0, 1b b,
12

,( ) ( )= =γ∅ .
Fix thresholds S S, 02 1> . The threshold S1 gives the time taken to combine 1T  and 2T , and S2 

models the time 12T  spends in the station before leaving. Initialize aN  so that x x0 , 0 01 2( ) ( )<  
and 0 0( )τ = . The event map X,a( )τE  is defined for x x, 01 2 ⩽  and Sτ<  by

x x
x x
x x

x x S

X, , , 0
, 0, 0
, 0, 0

, 0,

a
1 2

1 1 2

2 1 2

1 2 1

( )τ
α
α
β τ

∅= <
= = <
= < =
= = = <

E

The event map x ,b
12( )τE  is defined for x 012 ⩾  and S1⩾τ  by

x x S S, , 0,
, otherwise

b
12 12 1 2( )τ γ τ

∅
= = < +
=

E

When S1τ = , we switch from network aN  to bN .
The splitting construction is similar except that we need to split the local clock for the 

combined train into two clocks, one for each separated train.

Figure 6.  Combining two trains into a single train.
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5.2.  Power grids and microgrids

5.2.1.  Power grids as asynchronous networks.  We first consider an unrealistic, but simple 
and instructive model that shows how asynchronous and event dependent effects can naturally 
fit into the framework of power grids. In the following section, we describe how more realistic 
models are obtained, their limitations, and where we might expect asynchronous network 
models to be useful.

We use the simplest model [28] for power grid frequency stability that assumes generators 
are synchronous, loads are synchronous motors and consider the network of mechanical phase 
oscillators

P k j nsin , ,j j j j
i

n

ij i j
1

( )∑″θ α θ θ θ+ = − − ∈′
=

� (5)

where (kij) is a a symmetric matrix, all entries positive (zero is allowed). If P 0j j∑ =  the sys-
tem can reach an equilibrium (Pj  <  0 corresponds to a load). Let Γ be the (undirected) graph 
determined by the matrix of connections given by (kij). While the network described by (5) is 
not asynchronous (and the main interest lies with the stability of the equilibrium solution), the 
dynamics of real-world power grids are subject to factors that cannot be adequately described 
by a synchronous model. For integrity of transmission lines, as well as system stability, it is 
essential that the phase differences i jθ θ| − | are bounded away from 2/π . For example, we might 
require Ti j ij⩽θ θ| − | , where T 0, 2ij ( / )π∈  will be a threshold determining the safe operational 
load for the transmission line. This leads to the construction of state dependent event maps 

i j: ,ij
n → { \ { ↔ }}T Γ ΓE . If Ti j ijθ θ| − | > , then i jij( ) \ { ↔ }θ = ΓE  and the transmission line 

between nodes i and j is disconnected. Equation (5) is modified accordingly. Similarly, lines 
or generators may be disconnected because of external events—such as lightening strikes or 
mechanical breakdowns. These can be modelled using a stochastic event map.

As we indicated above, the model we have used is unrealistic (it is not true, for example, 
that typical loads are synchronous motors). In the next section, we indicate how more realis-
tic models are obtained, their limitations, and where we might expect asychronous network 
models to be useful.

5.2.2.  Network-reduced model for power grids.  We give an overview of the network-reduced 
coupled phase oscillator model for power grids, largely based on Dörfler [20], and refer the 
reader to [20, 55] for greater generality, alternative models, and the many details we omit. Apart 
from describing the model, our goal is part cautionary (it is not evident that general theories of 
synchronous or asynchronous networks have much to contribute to stability problems involv-
ing structural change), and part comparative with the models we describe later for microgrids.

Assume a power grid with synchronous generators, DC power sources, transmission lines 
and various types of load. We assume a reference frequency Rω  for the power grid, usually 
50Hz or 60Hz, and note that frequency synchronization is critical for the stability of the power 
grid: our equations will be written nominally in terms of phases ti( )θ  but for the models, we 
can always replace ti( )θ  by t ti R( )θ ω−  to get the (same) equations for phase deviations that are 
needed for stability theory (phase differences, but not absolute phases, matter).

Formally, assume given an undirected (connected) weighted graph G with node set n=V  
and edge set 2⊂E V . Nodes will be partitioned as ,1 2 3= ∪ ∪V V V V  where 1V  consists of syn-
chronous generators, 2V  are DC power sources, and 3V  comprises various types of load (see 
below and note we do not consider all types of load).

Each edge i j,( )∈ E, i j≠ , is weighted by a non-zero admittance Yij C∈  and corresponds 
to a transmission line. The imaginary part Yij( )I  is the susceptance of transmission line and 
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Yij( )R  is the conductance. Typically, a high voltage AC transmission line is regarded as loss-
less ( Y 0ij( )R = ) and inductive ( Y 0ij( )I > ). We allow self-loops i  =  j, these will correspond to 
loads modelled as impedances to ground (nonzero ‘shunt admittances’).

To each node is associated a voltage phasor V V ei i
ı i=| | θ  corresponding to phase iθ  and mag-

nitude Vi| | of the sinusoidal solution to the circuit equations.
For a lossless network, the power flow from node i to node j is given by a sinij i j( )θ θ− , 

where a V V Yij i j ij( )I=| || |  gives the maximal power flow (see Kundur [40, chapter 6]).

5.2.3.  Synchronous generators.  We assume dynamics of synchronous generators are given 
by

M D P a isin , ,i i i i m i
j

n

ij j i,
1

1( )∑″θ θ θ θ+ = + − ∈′
=

V� (6)

where ,i iθ θ′ are generator rotor angle and frequency, M D, 0i i>  are inertia and damping 
coefficients, and Pm,i is mechanical power input.

5.2.4.  DC/AC inverters: droop controllers.  Each DC source in 2V  is connected to the AC grid 
via a DC/AC inverter following a frequency droop control law which obeys the dynamics [62]

D P a isin , .i i d i
j

n

ij j i,
1

2( )∑θ θ θ= + − ∈′
=

V� (7)

5.2.5.  Frequency dependent loads.  We assume the active power demand drawn by load i 
consists of a constant term Pl,i  >  0 and a frequency dependent term Di iθ′, Di  >  0, leading to 
the power balance equation

D P a isin , ,i i l i
j

n

ij j i f,
1

3,( )∑θ θ θ= − + − ∈′
=

V� (8)

where f3,V  is the subset of 3V  consisting of frequency dependent loads. Equation (8) is of the 
same form as (7), and we may replace 2V  by f2 3,∪V V  and consider the general equation

D a isin , ,i i i
j

n

ij j i
1

2( )∑θ ω θ θ= + − ∈′
=

V� (9)

where iω  is positive if the node is a DC generator and negative if it is a frequency dependent 
load.

We can similarly allow for loads which are synchronous motors, incorporate them in 1V  
and consider

M D a isin , ,i i i i i
j

n

ij j i
1

1( )∑″θ θ ω θ θ+ = + − ∈′
=

V� (10)

where iω  is positive if the node is a synchronous generator and negative if it is a synchronous 
motor.

5.2.6.  Constant current and constant admittance loads.  We assume the remaining loads each 
require a constant amount of current and have a shunt admittance (to ground). In this case we 
have a current balance equation and, through the process of Kron reduction [22], may obtain 
a reduced network the equations of which are
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M D a isin , ,i i i i i
j

n

ij j i ij
1

1˜ ˜ ( )∑″θ θ ω θ θ ϕ+ = + − + ∈′
=

V� (11)

D a isin , .i i i
j

n

ij j i ij
1

2˜ ˜ ( )∑θ ω θ θ ϕ= + − + ∈′
=

V� (12)

We refer to [21] for the explicit form of the coefficients in (11) and (12).
The original power grid network is typically sparse with many nodes— 3V  is large. The 

process of Kron reduction results in a much smaller network which will be all-to-all coupled 
provided that the graph defined by 3V  is connected [22]. However, even if the original trans-
mission lines are lossless, the phase shifts ijφ  will generally be non-zero and not necessarily 
always small (we refer to [55, section 6.2 figure 4] for data from a real power grid network). 
The presence of phase shifts can and does make it harder to frequency synchronize (11) and 
(12); see also [50].

From the point of view of transmission line failure in a power grid, even if the removal of 
an edge still results in a all-to-all coupled reduced network, many of the coupling coefficients 
aij˜  will change. It is a hard problem, that goes beyond existing analytical theory for synchro-
nous and asynchronous networks, to get good insight into whether or not a breakdown will 
destabilize the network (this is irrespective of phenomena like Braess’s paradox [56, 66]).

5.2.7.  Microgrids.  Assume given a stable power grid network, robust to ‘small’ changes in 
power demand, and consider the problem of modelling a microgrid and its combination or 
separation from the main grid. We outline structural and logical issues to make transparent the 
connection with asynchronous networks and largely ignore dynamics so as to keep the model 
simple and our discussion short (we refer to [23, 24, 62, 16] for more details and references on 
microgrids and control from a large and growing literature in this area). Assume power gen-
eration in the microgrid is from DC generators (such as solar power or DC wind power) and 
that 1= ∅V  (most motor loads are not synchronous). Assume the microgrid is Kron reduced.

Unlike the power grid model described above, we allow directed (one way) connections 
and a constraining node. Consider the simplified network N N N N, , ,B G P0{ }=N , where the 
nodes N N N, ,B G P correspond to a large capacity battery (buffer), a DC generator, and main 
power grid respectively, and define subnetworks N N,M B G{ }=N  (microgrid) and NP P{ }=N  
(main power grid).

The battery acts as reserve storage or buffer for the microgrid; in particular to maintain 
power in the event of intermittent loss of generated DC power or when the microgrid has been 
separated ‘islanded’ from the main power grid. We suppose battery capacity B B t B0, M( ) [ ]= ∈ , 
where BM corresponds to the battery being fully charged. We suppose that the DC generator 
produces power O O t O0, M( ) [ ]= ∈ , where OM is the maximum power than can be generated.

The constraining node will play a role when the microgrid is islanded and is to be recon-
nected to the main power grid: either because the microgrid has insufficient power for the 
microgrid loads or because the microgrid has an excess of available power some of which 
can now be contributed to the main power grid. In either case a transition process needs to 
be implemented where the droop controller for the DC/AC converter needs to bring the AC 
output of the microgrid in precise voltage (phase, frequency and magnitude) synchronization 
with the state of the power grid at the connection point(s) to the microgrid. Similarly, we can 
constrain when the microgrid is to be islanded from the main grid so that the reduction in 
power contributed to the main power grid is gradual and done over an appropriate time scale 
so as not to destabilize the main power grid.
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Leaving aside the dynamics of islanding and combining the microgrid with the main power 
grid, the generalized connection structures and control logic we need for management of the 
microgrid are complex and depend on several thresholds which may need to be time depend-
ent—for example, if we use a time dependent model for the projected microgrid power load. 
If the microgrid is islanded, we work with MN  and use the generalized connection structure

N N N N, , .M G B B G{ → → }α β ∅= = =A

The connection structure α corresponds to the DC generator having sufficient output to sup-
ply all power needed for the microgrid load and with a surplus which can be used to charge 
the battery, β corresponds to battery and generator providing all necessary power for the 
microgrid, and ∅ corresponds to the generator providing all needed power for the microgrid 
and either there is surplus power available for battery charging or the battery is fully charged. 
Thresholds that determine switching between these states are chosen so as to avoid ‘chatter-
ing’ in the control system.

If the microgrid is combined with the main power grid, this can be either because battery 
and DC generators cannot provide sufficient power for the microgrid load or because the 
microgrid has surplus power which can be contributed to the main power grid or because the 
main power grid is stressed (possibly locally detected by frequency variation) and the battery 
state of the microgrid is sufficiently high to allow a temporary power contribution to the main 
grid. As generalized connection structure A we take the set of connection structures

N N N N N, ,G M G M B→ → ←

N N N N N N N N, , ,B G M M G M G B→ ← → → →

Each of these connection structures has a natural interpretation. For example, N N NM G B→ →  
corresponds to the main power grid contributing to both the load of the microgrid and battery 
charging while N N NG M B→ ←  means battery and DC generator are contributing power to 
the main power grid as well as supplying all the power for the microgrid. On the other hand, 
N NG M→  means DC generated power, but not battery power, is being contributed to the main 
power grid.

Of course, what we have described above is highly simplified as we have taken no account 
of (1) multiple DC generators and batteries within a microgrid, or (2) multiple microgrids. 
In the latter case, we need to take care that microgrid switching does not synchronize as this 
could lead to large destabilizing changes in load on the main grid.

6.  Products of asynchronous networks

We conclude with the definition of the product of asynchronous networks and give sufficient 
conditions for an asynchronous network to decompose as a product of two or more asynchro-
nous networks. Although the methods we use are elementary, the study of products is illumi-
nating as it clarifies some subtleties in both the event map and the functional structure that are 
not present in the theory of synchronous networks. These ideas play a central role in the proof 
of the modularization of dynamics theorem in the companion paper [13].

6.1.  Products

Given M k, ( )α β∈ , define M k( )α β∨ ∈  (the join of α and β) by

i j kmax , , ,ij ij ij( ) { }α β α β∨ = ∈
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(the max-plus addition of tropical algebra [35]). We have α α∅∨ =  for all M k( )α∈ . If 
M k, ( )⊂A B  are generalized connection structures, define the generalized connection struc-

ture ∨A B by

, .{ }α β α β∨ = ∨ | ∈ ∈A B A B

Note that ∅∈ ∨A B if and only if ∅∈ ∩A B. Consequently, if ∅∈ ∨A B, then , ⊂ ∨A B A B.
Suppose that A is a nonempty subset of k containing kA elements. There is a natural embed-

ding of M(kA) in M(k) defined by relabelling the matrices in M(kA) according to A. Specifically, 
map the matrix M kij i j A A,( ) ( )α ∈∈  to the matrix M k( )α ∈�  defined by

i j Afor , ,

0 otherwise.
ij

ij  ⎧
⎨
⎩α
α

=
∈

�

This embedding extends to an embedding of M kA•( ) in M k•( ) by

i Afor ,
0 otherwise.

i
i

0
0{  α α= ∈�

Given disjoint nonempty subsets A,B of k, regard M k M k,A B• •( ) ( ) as embedded in M k•( ). Given 
M kA•( )α∈ , M kB•( )β∈ , define

M k .•( )α β α β∨ = ∨ ∈� �

This extends to the join ∨A B of generalized connection structures on disjoint sets of 
nontrivial nodes.

Let N N, , k0{ }= …N  and A be a proper subset of k. Define N j AA
j

•{ }= | ∈N  and 
MMA i A i= ∏ ∈ . Denote points in MA by XA. Suppose B Ak \= . We have NA B

0{ }∩ =N N  and 
M M MA B× ≈ . If CA, CB are constraint structures on AN , BN  respectively, let C C CA B= ∨  
denote the induced constraint structure on N—well defined since constraints depend only on 
nodes and A B∩ = ∅.

More generally, given disjoint node sets N j AA
j

•{ }= | ∈N , N j BB
j

•{ }= | ∈N , we can 
identify A,B with complementary subsets of k, where k is the total number of elements in 
A B∪ , and then follow the conventions described above.

Definition 6.1 (Notation and assumptions as above).  Given asynchronous networks 
, , ,X X X X X( )N = N A F E , X A B,{ }∈ , define the product A BN N×  to be the asynchronous 

network , , ,( )N = N A F E  where

	(1)	 A B= ∪N N N ,
	(2)	C C CA B= ∨ ,
	(3)	 A B= ∨A A A ,
	(4)	 f f ,A B

A B
A B{ }α β= × = × | ∈ ∈α βF F F A A , and

	(5)	E is defined by

X X X X X X M M, , for , .A B
A

A
B

B A B A B( ) ( ) ( )  ( )= ∨ ∈ ×E E E

Remark 6.2.  If ,A BN N  are proper (or amenable), then so is A BN N× .

Lemma 6.3 (Notation of definition 6.1).  The network vector field on A BN N×  is  
given by

F X X f X f X, , ,A B A A B B
X XA

A
B

B( ) ( ( ) ( ))( ) ( )= E E� (13)
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for all X X M M,A B A B( )∈ × .

Proof.  Immediate from the definitions.� □

6.2.  Decomposability

Definition 6.4.  An asynchronous network , , ,( )N A F E  is decomposable if it can be written 
as a product of asynchronous networks. If the network is not decomposable, it is indecompos-
able.

Example 6.5.  Suppose that N  is a synchronous network with connection structure 
M k( )α∈  and α-admissible network vector field f satisfying conditions (N1–3) of section 2. 

Since α encodes the dependencies of f it is trivial that N  can be written as a product of two 
synchronous networks iff the network graph Γα is disconnected.� ♢
Our aim to find sufficient conditions on an asynchronous network for it to be decomposable.

Definition 6.6.  The connection graph of the asynchronous network ( )N = N A F E, , ,  is 

the graph defined by the 0 -1 matrix N αΓ = α∈⋁ A
�.

Lemma 6.7.  If an asynchronous network N is decomposable, then the connection graph NΓ  
of N has at least two connected components.

Proof.  If N is decomposable, then A BN N N= × , where A,B are proper complementary 
subsets of k. Since there are no connections between nodes in AN  and BN , NΓ  has at least two 
connected components.� □

Remark 6.8.  Lemma 6.7 gives a necessary condition for decomposability which is not suf-
ficient. There are two issues. First, the event map encodes information about spatial depend
ence of node interactions that cannot be deduced from the connection graph. Second, the 
admissible vector fields may have dependencies that are incompatible with decomposability.

Example 6.9.  Let k  =  2, M M1 2 R= = . Define connection structures N Ni i0 →α = , i 2∈  
and generalized connection structure , , ,1 2 1 2{ }α α β α α∅= = ∨A . Suppose the event map 
is given by

x x

x x
x x
x x

,

, if 0, 0
, if 0, 0

, if 0,
, otherwise

1 2

1 1 2

2 1 2

1 2
( )

 
 
 

⎧

⎨
⎪⎪

⎩
⎪⎪

α
α
β
∅

=

< =
= >
= =

E

In this case, 1 2= ∨A A A , where ,i
i{ }α∅=A , i 2∈ , and the network graph is disconnected. 

However, there is no way to write x x,1 2( )E  as x x1
1

2
2( ) ( )∨E E  as the event sets involving x M1 1∈  

depend nontrivially on x M2 2∈ . Hence the network cannot be decomposable or even equiva-
lent to a decomposable network whatever choice we make for admissible vector fields.

Suppose instead we define the event map by

x x

x x
x x
x x

,

, if 0, 0
, if 0, 0

, if 0
, otherwise

1 2

1 1 2

2 2 1

1 2

˜( )

 
 
 

⎧

⎨
⎪⎪

⎩
⎪⎪

α
α
β
∅

=

= ≠
= ≠
= =

E
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In this case 1 2= ∨A A A  and we may write 1 2= ∨E E E  where 0i
i( ) α=E , and xi

i( ) ∅=E , x 0i≠ , 
i 2∈ . Suppose that x x vf , 0,1 2 2

1( ) ( )=α , x x vf , , 01 2 1
2( ) ( )=α , x x v vf , ,1 2 1 2( ) ( )=∅ , where v v, 01 2≠ . 

For the moment leave fβ unspecified. Define f f,i
i i

i{ }= α∅F , where x vf i i i( ) =∅ , xf 0i i
i( ) =α , i 2∈ . 

Observe that f f f1 2= ×∅ ∅ ∅, f f f1 2
1 1= ×α α ∅ and f f f1 2

2 2= ×α α∅ . For , , ,( )N A F E  to be a product 
we additionally require x x x xf f f, , 0, 01 2 1 1 2 2

1 2( ) ( ( ) ( )) ( )= =β α α , all x x,1 2
2( ) R∈ . In particular, if 

f 0, 0 0, 0( ) ( )≠β , the network N A F E, , ,( ) is not even equivalent to a product network. How-
ever, if f 0, 0 0, 0( ) ( )=β , then the network ( )N A F E, , ,  will be equivalent to a product network 
if we redefine fβ to be f f1 2

1 2×α α  (this does not change the values of fβ on Eβ).� ♢

6.3.  Sufficient conditions for decomposability

Let N be an asynchronous network with k nodes and C be a proper connected component 
of the connection graph NΓ . Identify C with the nonempty subset of k corresponding to the 
labels of the nodes in the component C. Let C Ck \= . Since C is a connected component of 
NΓ , we can write each α∈A uniquely as C Cα α α= ∨ , where Cα , Cα  are connection struc-

tures on CN  and CN  respectively. Set C
C{ }α α= | ∈A A . We have a well defined projection 

:C
C→π A A  defined by C C( )π α α= .

Define the event map M M:C
C C

C→×E A  by

X X X X, , .C
C C C C C( ) ( ( ))π=E E

Definition 6.10.  An asynchronous network N is structurally decomposable if for any con-
nected component C of the connection graph NΓ , the map CE  is independent of X MC C∈  (that 
is, X X X,C

C C C
1( ) ( )=E E  where M: C

C1 →E A ).

Remark 6.11.  Structural decomposability implies conditions on structural dependencies 
that will generally be different from the dependencies of the network vector field. For exam-
ple, suppose a component C of the connection graph contains the node N1. If the node N1 is 
stopped there may be a condition that N1 will restart when the state of another node, say N2, 
attains a certain value. Necessarily, N2 must lie in C (structural decomposability). However, 
there need be no connection between N1 and N2 unless C contains exactly two nodes.

Suppose that N is structurally decomposable and that NΓ  has connected components 
C C, , q1 … . Set M MC=� �, C ( )π=� �A A , q∈� . By structural decomposability we may write 

= ∈⋁E E�
�
�X Xq( ) ( ) where M: →�

�
�E A . For α∈A, q∈� , set C ( )α π α= ∈�

�
� A  and 

E M1( ) ( )⊂α=α −� �
� ��

E .

Lemma 6.12 (Notation as above).  If N is structurally decomposable and NΓ  has  
connected components C C, , q1 … , then

E E M , for all .
q q

   ⊂∏ ∏ α= ∈α α
∈ ∈�

�

�
��

A

Proof.  An immediate consequence of structural decomposability.� □

If C be a proper connected component of the connection graph NΓ  of an asynchronous 
network N, then by admissibility

f f f , for all ,C C    α= × ∈α α α A

where  Tf M M:C C C→α  and Tf M M:C C C→α .
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In order that N be decomposable, this decomposition has to be compatible with the projec-
tions :C

C→π A A , :C
C→π A A . In particular, if connections in the set of nodes that are in C  

are added or deleted, dynamics on MC is not affected.

Definition 6.13 (Notation as above).  The asynchronous network N is dynamically de-
composable if for any connected component C of NΓ , we have

f fC C=α β

for all ,α β∈A such that C C( ) ( )π α π β= .

Lemma 6.14 (Notation as above.).  Input consistent asynchronous networks are dynam-
ically decomposable. In particular, asynchronous networks with additive input structure are 
dynamically decomposable.

Proof.  Given i k,α∈ ∈A, let J i,( )α  be the associated dependency set for node Ni. If 

,α β∈A and J i J i, ,( ) ( )α β= , then f fi i=α β by input consistency. If i C∈ , where C is a 
connected component of the network graph NΓ , then J i Ck,( ) ⊂α ∩  for all α∈A. Hence 

J i J i, , C C( ) ( )α α α= ∨  is independent of Cα . Input consistency implies that f fi i
C C=α β α γ∨ ∨  

for all , Cβ γ∈A  which yields dynamical decomposability.� □

We now state the main result of this section.

Theorem 6.15.  Let N be a structurally and dynamically decomposable asynchronous  
network with connection graph Γ. If Γ has connected components C C, , q1 …  then there exist 
indecomposable asynchronous networks , , q1N N…  such that

.q1N N N= × ×�

Proof.  For q∈� , define α π α α= = | ∈A A�
� �

def{ ( ) } and = =α αF � � �
�

�
f f M:C

def{ → 

α| ∈A�T M }. By dynamical indecomposability we have f fq= ∏α α
∈� �

�, for all α∈A. Con-

straint structures are defined for individual nodes and so factorise naturally. Let M: →�
�

�E A  
be the event maps given by structural indecomposability. If we let N� be the asynchronous 
network , , ,( )� � � �N A F E , where N N i Ci i0{ } { }= ∪ | ∈�N , q∈� , then i

qN N= ∏∈ .� □

Our concluding result on decomposability is an immediate consequence of lemma 6.7 and 
theorem 6.15.

Corollary 6.16.  A structurally and dynamically decomposable asynchronous network N 
is decomposable if and only if its connection graph has more than one nontrivial connected 
component.

6.4.  Factorization of asynchronous networks

Assume for this section that = N A F E, , ,( )N  is an asynchronous network which is not neces-
sarily structurally or dynamically indecomposable.

Definition 6.17.  The asynchronous network 1N  is a factor of N if there is an asynchronous 
network 2N  such that 1 2N N N= × .

The proof of the next lemma is immediate from the definition of a product.
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Lemma 6.18.  If 1N  is a factor of N, then the connection graph 1NΓ  is a union of connected 
components of NΓ .

Remark 6.19.  If 1N  is indecomposable, the connection graph 1NΓ  may have more than one 
component—unless N is structurally and dynamically indecomposable (theorem 6.15).

Proposition 6.20.  Every asynchronous network N has a factorization a
a

qN∏ ∈  as a prod-
uct of indecomposable asynchronous networks. The factorization is unique, up to the order of 
factors.

Proof.  Existence is obvious. The uniqueness of factorization follows easily from lemma 
6.18.� □
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