LUFA & Studio5 Beginner’s Guide
Part 1: Compiling the VirtualSerial Demo

Introduction
This is a step by step guide to compiling the VirtualSerial demo in the LUFA USB library using Studio5. Please
keep in mind that this guide is “a way of doing it”, not “the way of doing it”.

LUFA (Lightweight USB Framework for AVRs), written and maintained by Dean Camera, “is an open-source
complete USB stack for the USB-enabled Atmel AVR8 and (some of the) AVR32 microcontroller series.” It is
available at: http://www.fourwalledcubicle.com/LUFA.php.

Studio5 (Atmel’s AVR Studio 5) is an IDE (Integrated Development Environment) for AVR microcontrollers
that includes the GCC ‘C’ compiler. It is available from Atmel at:
http://www.atmel.com/tools/ATMELAVRSTUDIO.aspx

The GCC Compiler Manual can be downloaded from: http://gcc.gnu.org/onlinedocs/gcc-4.6.3/gcc.pdf
The GNU C Library Manual can be downloaded from: http://www.gnu.org/software/libc/manual/pdf/libc.pdf
The GNU Make Manual can be downloaded from: http://www.gnu.org/software/make/manual/

This guide uses Studio5 version 5.1.208 and LUFA-120219.

Caveat Emptor
| am not an expert in AVR, Studio5, or LUFA. In fact, I'm a rank beginner in both Studio5 and LUFA. I'm
writing this because being able to compile the demo represents the first rung of the ladder and | hope this
guide helps the next person get to that first rung quicker and with less frustration.
No warranty expressed or implied. YMMV.

Before We Start
You should already have downloaded and installed Studio5 as well as downloaded the LUFA zip file and
extracted the files. This guide is based on LUFA-120219 from LUFA-120219.zip. If you extracted the files
and couldn’t find the documentation, that’s because it's not included. You need to download the
documentation separately.

Downloads
=] LUEA 120219 { Mirror, Prebuilt Docs, Online Docs)

VAR

LUFA-120219.zip LUFA-120219-Documentation. zip

Figure 1: From www.fourwalledcubicle.com/LUFA.php - Scroll to bottom of page.

Once the documentation zip file is downloaded and extracted, navigate to the file index.html in the
directory: \documentation\html\. Open the file using a browser and you’ll see the main page with a table of
contents in the left hand pane.

http://www.fourwalledcubicle.com/LUFA.php
http://www.atmel.com/tools/ATMELAVRSTUDIO.aspx
http://gcc.gnu.org/onlinedocs/gcc-4.6.3/gcc.pdf
http://www.gnu.org/software/libc/manual/pdf/libc.pdf
http://www.gnu.org/software/make/manual/

As shown in figure 2, a Getting Started section is included under the Related Pages group. As shown in
figure 3, under Building as a Linkable Library, it is recommended that the library source files be compiled
with the project. This is the approach that will be followed in this guide.

ﬁ‘j LUFA Library 120219

Main Page Related Pages | Modules | Data Structures | Files | Directories Q- Search

»

LUFA Library Documentation

Main Page
Why Use LUFA?
LUFA vs the Atmel 8-bit USB AVR Stack
Alternative USB AVR Stacks
Source Code License

m

Donating to Support This Project
Included Library Applications
¥ Related Pages
» About LUFA
» Developing With LUFA
¥ Getting Started
Configuring the Demos, Bootloaders a

Logo design by Studic Monsoon Photography

Compiling the Demos, Bootloaders ang http://www.lufa-lib.org

Programming an Application into a US
Deprecated List

> Modules LUFA is donationware. For author and donation information, see Donating to
» Data Structures Support This Project.
> Files

LUFA is an open-source USB library for the USB-enabled AVR microcontrollers, released under
» Directories the MIT license (see Source Code License). It supports a large number of USE AVR. models

Figure 2: LUFA Documentation via index.html

:ﬂ LUFA Library 120219

Main Page Related Pages Modules | Data Structures | Files | Directories Q- Search
|

Fs

¥ LUFA Library —
» Main Page

Building as a Linkable Library

¥ Related Pages
» About LUFA The LUFA library can be built as a proper linkable library (with the extention .a)
¥ Developing With LUFA unl:!e.r AVR-GCC, so tl?at the Ilbrar\?,r does not neled to Pl:ze recompiled \vlwth each
revision of a user project. Instructions for creating a library from a given source
Summary of Compile Tokens tree can be found in the AVR-GCC user manual included in the WinAVR
Migrating from Older Versions install /Docs/ directory.

VID and PID values However, building the library is not recommended, as the static (compile-time)

Building as a Linkable Library options will be unable to be changed without a recompilation of the LUFA code.
Writing LUFA Board Drivers Therefore, if the library is to be built from the LUFA source, it should be made to
be application-specific and compiled with the static options that are required for
each project (which should be recorded along with the library).

m

Entering the Bootloader via Softw
» Getting Started
Deprecated List =

Mormal library use has the library components compiled in at the same point as
the application code, as demonstrated in the library demos and applications. This
is the preferred method, as the library is recompiled each time to ensure that all
» Data Structures - | |static options for a particular application are applied.

» Modules

Figure 3: LUFA Documentation - Compile library source files with project.

Step 1: Import the Studio 4 Project VirtualSerial.aps

Use File, Import, AVR Studio 4 Project

File | Edit View VAssistX Project Debug Tools

Close

Close Solution

Save Selected ltems Ctrl+S

Save Selected Items As...

New »

Open N 1o -

Import 3

Window Help
1+ [b |
ML @ | o ow b

AVR32 Studio Project...
AVR Studio 4 Project...

Project Template...

Ctrl+3
Ctrl+4
Ctrl+T

@ SaveAll
Export Template...

Ctrl+Shift+S

L] Page Setup...

= Print... Ctrl+P
Recent Files 3
Recent Projects and Sclutions 4

Exit Alt+F4

Figure 4: Import an AVR Studio 4 Project

Select the project VirtualSerial.aps located at:
LUFA\ LUFA-123219\ LUFA-120219\ Demos\ Device\Class Driver\VirtualSerial\

[Open ﬁ1

@Uv| | \LUFA\LUFA-120219\LUFA-120219\Demos\Device\ ClassDriver\VirtualSerial v | 43 | | Search Vi 0|

Organize » New folder =+ [0 I@I
-~

MName Type Size Date modified

[*| VirtualSerial aps File 3KB 2/26/2012 7:29 PM

File name: VirtualSerial - [Avr Studic 4 Project (*.aps) v]

[Open][Cancel]

L%

Figure 5: Select the Project File VirtualSerial.aps

Import AVR Studio 4 Project

Select AVR Studio 4 Project

APS File Location: 'ies\LUFA\LUFA-120219\LUFA-120219\Demos\Device\CIassDriver\VirtuaISerial\VirtuaISerial.aps{ Browse

Select Location To Save AVR Studio 5 Project

Solution Folder: nel_Studio_Libraries\LUFA\LUFA-120219\LUFA-120219\Demos\Device\ClassDriver\VirtualSerial

I

rowse

Figure 6: By default, the Studio5 project location is the location of the Studio 4 project file.

Notice that by default, the conversion will put the Studio5 Project in the same folder as the demo Project
File.

Since we will be modifying the project source files to suit our own project requirements, we will specify a
different directory for the Studio5 Project. Under “Select Location To Save AVR Studio 5 Project”, click
Browse and navigate to where you want to locate the project. Click the “Make New Folder” button and
name the new folder. This guide uses LUFA-Test2.

i s
Browse For Folder ﬂ.@
4 | Programming o
[+) Atmel_Studic_Libraries
4 | Atmel_Studic_Projects
bl LUFA-Testl |E
| | LUFA-Test2 |
| [+ 1) Cypress PSOC
. Excel VBA S
Make Mew Folder] [QK] [Cancel

Figure 7: Make a new folder for the Studio5 Project — LUFA-Test2

Import AVR Studio 4 Project

Select AVR Studio 4 Project

APS File Location: ries\LUFA\LUFA-120219\LUFA-120219\Demos\Device\ClassDriver\VirtualSerial\VirtualSerial.aps

Select Location To Save AVR Studio 5 Project

Solution Folder: I_Files\Programming\Atmel_Studio_Projects\LUFA-Test2 Browse

Figure 8: The two separate directories are shown and ready to Convert

Click “Convert” and then “Yes” to copy the files, then “Finish”. The Import function copies the files from the
Studio4 project to the directory specified for the Studio5 project and creates a new Studio5 project file.

r& AVRStudio .- - [

Ca—

APS File location and Solution Foelder are not same, files will be copied. Do you want to
¥ continue?

[oves || o |

=

Figure 9: Import function will copy files. Click Yes.

Solution Explorer - 1 x

| &
|,; Solution 'WirtualSerial' {1 project)
4 || VirtualSerial |

[=d] Dependencies

[=d] Output Files

2] Descriptors.c

|h] Descriptors.h

2] VirtualSerial.c

|h] VirtualSerial.h

Figure 10: Solution Explorer shows the files in the new Studio5 project.

Step 2: Make Changes to the Studio5 Project Properties

Selecting the makefile that the Studio5 project will use.

Figure 11 shows the files in the new Studio5 project. Notice that the makefile for the VirtualSerial Demo has

been copied to the project folder.

-

= | B | |

-
@U-| . % Atmnel_Studio_Projects » LUFA-Test2 » VirtualSerial » - | 4 | | Search Virt... 0O |
e
Organize - |] Open Burn Mew folder =« i l@l
Marme . Date modified Type Size
, Debug 3/10/2012 4:04 PM File folder
=] Descriptors 2/26/2012 7:29 PM C Source File 11 KB
] Descriptors 2/26/2012 7:29 PM C Header File 4 KB
| || makefile 2/26/2012 7:29 PM File 22 KB
ﬂ YirtualSerial 27262012 7:29 PM C Source File o KB
VirtualSerial 3/10/2012 5:26 PM AVR Studico 51 C Project 3 KB
ﬂ YirtualSerial 27262012 7:29 PM C Header File 3 KB

L

Figure 11: Though not shown in the Solution Explorer (Figure 10), the makefile was copied to the new folder.

To open the Project Properties Window:
In Solution Explorer, right click on the VirtualSerial project and then click on Properties in the popup menu.

Solution Explorer

=
; Selution 'VirtualSerial' (1 project)
4 VirtualSe-i-1

=d| Depel (] Build

Unload Project

VirtualSerial Proj Properties

=d Outp Rebuild
<] Descr Clean
] Descr
] Virtuz Al
h| Virtuz et as Start roject
] Virt Set as StartUp Proj
B8 AsFwizard
@ View ASF Example Project Help
¥ Cut
X Remove
Rename

Ctrl+X
Del
F2

Figure 12: Right click on VirtualSerial and then click on Properties.

Studio5 now displays the Project Properties widow. Note the menu on the left hand side.

VirtualSerial

Build

Configuration: | Active (defaul) v| Platform: |Active (AVR) v|
Build Events
Toalchain
Device Use External Makefile makefile
T 1. Target name must equal project name.

2. Build support requires "all" and "clean” targets.

Advanced 3. Makefile and target must exist in the same folder.
ASF

Executable

VirtualSerial

Figure 13: VirtualSerial Project Properties - Note that "Use External Makefile" is already checked.

Click the Browse button and you will see that the project is using the makefile in the demo folder.

-
® Open ﬁ
—— . = |
\\JU | J SALUFSALUFA-120219% LUFA-1 20219 Demosh\Device\ ClassDriver\Virtual Serial v‘ — | | Search Virt.. 0O

Organize » Mew folder = = [I@l

Marme . Type Size Date modified

C] Descriptors ource File 20/ i W
<D ip Cs Fil 11 KB 2/26/2012 7:29 PM
h| Descrniptors eader File {20/ [W
" D ip C Header Fil 4 KB 2/26/2012 7:29 PM
|| Doxygen.conf COMNF File 66 KB 2/26/2012 7:29 PM
£ | LUFA VirtualSerial Setup Information 4KB 2/26/2012 7:29 PM
|| makefile File 22KB 2/26/2012 7:29 PM
* | VirtualSerial aps File 3KB 2/26/2012 7:29 PM
Cl VirtualSena ource File 4] {20/ [W
<] VirtualSerial Cs Fil 6 KB 2/26/20127:29 PM
i] VirtualSerial C Header File 3KB 2/26/2012 7:29 PM
| VirtualSerial Text Document 3KB 2/26/2012 7:29 PM

File name: makefile ~ | AllFiles (**) -

[Open l ’ Cancel]

Figure 14: By default, the project properties selects the makefile located in the LUFA VirtualSerial Demo folder.

By default, the original makefile in the LUFA demo folder is selected. Because we’ll be making changes to
the makefile, we want to use the makefile that is located in the new Studio5 project folder.

Navigate to the makefile in the Studio5 project, and click open.
7

Figure 15 shows that the makefile in the Studio5 project is now specified.

VirtualSenal®

Build™
Configuration: | Active (defaul) +| Platform: |Active (AVR) -

Build Events
Teolchain
Device Use External Makefile ighAtmel_Studio_Projects\LUFA-Test2\VirtualSerial\makefile Browse
Teool .

1. Target name must equal project name.

2, Build support requires "all" and "clean” targets.
SRR 3. Makefile and target must exist in the same folder,
ASF

Executable

VirtualSerial

Figure 15: The makefile in the Studio5 project is now specified.

Selecting the device for the Studio5 project.

The makefile specifies the at90sub1287.

MCU name
MCU = at90usbl287

Figure 16: The makefile specifies an AT90USB1287 microcontroller.

The Project Properties, under Device, shows that the default device is the ATmegal28.

Build®
MNFA M/ A

Build Events
Toolches Current Device: ATmegal28 Change Device...
Device

Device Mame: ATmeqgal23
Toal App./Boot Memary (Kbytes): 128
pooncs | | S s it

Figure 17: In the project properties under "Device", the default device is the ATmegal28.

Click on the “Change Device” button and select the AT90USB1287.

Current Device: ATO0USB1287 Change Device... |
Device Name: AT20USB1287

App./Boot Memory (Kbytes): 128

Data Memory (bytes): 65024

EEPROM (bytes): 4096

Speed: 0

Ve 2.2/3.5

Family: meagadVR

Figure 18: The correct device is now shown.

Step 3: Make Changes to the Makefile

Open the makefile in the Studio5 project. (l used Notepad to open it.)
The makefile specifies a path for locating LUFA library files.

| makefile - Notepad = | B |

File Edit Format View Help

Path to the LUFA Tibrary
LUFA_PATH = ../ ../

LUFA library compile-time options and predefined tokens

LUFA_OPTS = -D USB_DEVICE_ONLY
LUFA_OPTS += -D FIXED_CONTROL_ENDPOINT_SIZE=8

LUFA_OPTS 4= -D FIXED_NUM_CONFIGURATIONS=1

LUFA_OPTS += -D USE_FLASH_DESCRIPTORS

LUFA_OPTS 4= -D USE_STATIC_OPTIONS="({USBE_DEVICE_OPT_FULLSPEED | USB_OPT_REG_

Create the LUFA source path variables by including the LUFA root makefile
include ${LUFA_PATH) /LUFA/makefile

| w

4 1] 3
h -

Figure 19: The LUFA_PATH needs to be changed to reflect the changed project folder.

The original makefile shows
LUFA_PATH=../../../..

and then
include S(LUFA_PATH)/LUFA/makefile

which translates to: backup four folders, open folder LUFA, and include file “makefile”.

This was for the original situation where both the project makefile and the library makefile were in the LUFA
library folders. Now, however, the project makefile is in the Studio5 project folder while the library makefile
is still in the LUFA library folder.

The directory structure that I’'m working with is shown in figure 20.

Folder: I_Files\Programming\Atmel_Studio_Libraries\LUFA\LUFA-1202 19 LUFA-1202 19\ Demos)\Device\ClassDriver\VirtualSerial
File: makefile <Makefile for the demo project=

Folder: IA_Files\Programming\Atmel_Studio_Libraries\LUFA\LUFA-1202 19 LUFA-1202 19 LUFA
File: makefile <Makefile for the LUFA library itself=

Folder: I7_Files\Programming\Atmel_Studio_Projects\LUFA-Test2\VirtualSerial
File: makefile <Makefile for the StudioS test proiect. which is a coov of the makefile of the demo oroiect>

Figure 20: Directory structure showing the locations of the makefiles.

LUFA_PATH should be changed to: backup three folders, open folders “Atmel_Studio_Llbraries”, “LUFA”,

“LUFA-120219”, and “LUFA-120219”. This translates to:
LUFA_PATH=../../../Atmel_Studio_Llbraries/LUFA/LUFA-120219/LUFA-120219

Avoid using direct path specifications because, as | understand it, GCC Make doesn’t like the “:” used by

Windows (i.e. C:\). Figure 21 shows the new entry for LUFA_PATH.

File Edit Format View Help

Path to the LUFA Tibrary
original was LUFA_PATH = ../../ ../ /..
LUFA_PATH=../../../atme]l_studio_LIbraries/LUFA/LUFA-120219/LUFA-120219 —

LUFA library compile-time options and predefined tokens

LUFA_OPTS = -D USB_DEVICE_OMLY

LUFA_OPTS 4= -D FIXED_CONTROL_ENDPOINT_SIZE=E

LUFA_OPTS 4+= -D FIXED_NUM_CONFIGURATIONS=1

LUFA_OPTS += -D USE_FLASH_DESCRIPTORS

LUFA_OPTS += -D USE_STATIC_OPTIONS="({USBE_DEVICE_OPT_FULLSPEED | USB_OPT_REG_ENA

Create the LUFA source path variables by including the LUFA root makefile
include ${LUFA_PATH)/LUFA/makefile

4| I 3

b — e e S— —— —

Figure 21: The new LUFA_PATH in the project makefile.

Save the make file and exit Notepad, and then in Studio5, under File, click Save All.

Step 4: Build the Project

Before building, we first must clean.
VirtualSerial - AVRStu -~

File Edit View VAssistX Project Build | Debug Tools Window Help

gl 8] - (5 b @ | # 53 &5 Build Solution 7

= 4’;\; 8 D O -3 Rebuild Sclution Ctrl+Alt+F7

Clean Sclution

¥ Build VirtualSerial
Rebuild VirtualSerial
Clean VirtualSerial

Configuration Manager...

Figure 22: Clean the Solution before building.

10

Now we are ready to build.

VirtualSerial - A\
e —

- S
File Edit View VAssistX Project | Build | Debug Tools Window Help
Pl @] v T e | % 53 & Build Solution =
O DRY A og Rebuild Solution Ctrl+Alt+F7

Clean Sclution

¥ Build VirtualSerial
Rebuild VirtualSerial
Clean VirtualSerial

Configuration Manager...

Figure 23: Build the Solution.

Finally, the result.

* 0 x

Output

Show output from: |Eh.|i|d '| | 3 | & | =% | =
Target "Build™ in file "C:“Program Files (x86)1%Atmel‘4WR Studioc 5.1%\Ws“Avr.common. -
Done building target “Build"” in project "VirtualSerial.cproj®.

Done building project “"VirtualSerial.cproj™.

Build succeeded.
========== Build: 1 succeeded or up-to-date, @ falled, @ skipped ========== =

F_{_; I =] Output B Find Resulis 1

Figure 24: Build was successful.

While the build was successful, | don’t know if the demo actually works because | don’t have the board it
was designed for.

Onward and Upward

Part 2, the second rung of the ladder, will be modifying the Studio5 project to work with the AVR
AT90USB162 microcontroller in the OLIMEX162 board.

Posted to www.avrfreaks.net by Chuck99 on 15 March 2012.

11

http://www.avrfreaks.net/

