This ring oscillator runs on the 'M0' ATSAMD21, which is a fairly popular microcontroller with an Arm Cortex M0 at it's heart. It has native USB functionality, and is supported with an Adafruit bootloader, making writing and running code fairly straightforward. I used Adafruit's Feather dev board for this test.
I dug through the arduino cores and printed out their lookup tables so that I could write the registers down... This was a great (albeit tangential) exercise.
/*
I found most of these definitions in the arduino cores in
AppData/Local/Arduino15/packages/adafruit/hardware/samd/1.0.19/cores/arduino/wiring_digital.c & wiring_digital.h
*/
#define PIN_LED_PORT 0
#define PIN_LED_PIN 17
#define PIN_10_PORT 0
#define PIN_10_PIN 18
#define PIN_11_PORT 0
#define PIN_11_PIN 16
#define LED_OUTSET PORT->Group[PIN_LED_PORT].OUTSET.reg
#define LED_OUTCLR PORT->Group[PIN_LED_PORT].OUTCLR.reg
#define RING_PORT_OUTSET PORT->Group[PIN_10_PORT].OUTSET.reg
#define RING_PORT_OUTCLR PORT->Group[PIN_10_PORT].OUTCLR.reg
#define RING_PORT_OUT_MASK (1UL << PIN_10_PIN)
#define RING_PORT_IN PORT->Group[PIN_11_PORT].IN.reg
#define RING_PORT_IN_MASK (1UL << PIN_11_PIN)
void setup() {
// set a pin to in
PORT->Group[PIN_LED_PORT].PINCFG[PIN_LED_PIN].reg = (uint8_t)(PORT_PINCFG_INEN);
// setting same pin to out (arduino configures an output as both, so it can read its own state. handy
PORT->Group[PIN_LED_PORT].DIRSET.reg = (uint32_t)(1 << PIN_LED_PIN);
// set 10 to output
PORT->Group[PIN_10_PORT].DIRSET.reg = (uint32_t)(1 << PIN_10_PIN);
// set 11 to input
PORT->Group[PIN_11_PORT].PINCFG[PIN_11_PIN].reg = (uint8_t)(PORT_PINCFG_INEN);
// do loop
while (1) { // no loop just c
RING_PORT_IN & RING_PORT_IN_MASK ? RING_PORT_OUTCLR = RING_PORT_OUT_MASK : RING_PORT_OUTSET = RING_PORT_OUT_MASK;
}
}
void loop() {
}
This enabled me to write the code that I ran during the test, where the M0 clocked at 1.45MHz. Scope traces and code below.
/*
I found most of these definitions in the arduino cores in
AppData/Local/Arduino15/packages/adafruit/hardware/samd/1.0.19/cores/arduino/wiring_digital.c & wiring_digital.h
also samd/1.0.19/variants/variant.h and variant.cpp and pins_arduino.h
*/
#define PIN_10_PORT 0
#define PIN_10_PIN 18
#define PIN_11_PORT 0
#define PIN_11_PIN 16
#define RING_PORT_OUTSET PORT->Group[PIN_10_PORT].OUTSET.reg
#define RING_PORT_OUTCLR PORT->Group[PIN_10_PORT].OUTCLR.reg
#define RING_PORT_OUT_MASK (1UL << PIN_10_PIN)
#define RING_PORT_IN PORT->Group[PIN_11_PORT].IN.reg
#define RING_PORT_IN_MASK (1UL << PIN_11_PIN)
void setup() {
// set 10 to output
PORT->Group[PIN_10_PORT].DIRSET.reg = (uint32_t)(1 << PIN_10_PIN);
// set 11 to input
PORT->Group[PIN_11_PORT].PINCFG[PIN_11_PIN].reg = (uint8_t)(PORT_PINCFG_INEN);
// do loop
while (1) { // no loop just c
RING_PORT_IN & RING_PORT_IN_MASK ? RING_PORT_OUTCLR = RING_PORT_OUT_MASK : RING_PORT_OUTSET = RING_PORT_OUT_MASK;
}
}
void loop() {
}
With the Arduino digitalWrite and digitalRead calls, the ring is ~162khz
The code for this is below. About 1us of this latency is 'loop' call overhead.
void setup() {
// put your setup code here, to run once:
pinMode(10, OUTPUT);
pinMode(11, INPUT);
}
void loop() {
// put your main code here, to run repeatedly:
digitalWrite(10, 1-digitalRead(11));
}