Select Git revision
-
Neil Gershenfeld authoredNeil Gershenfeld authored
flexure_stiffness.py 12.88 KiB
#!/usr/bin/env python
from __future__ import division
from numpy import *
import argparse
from pyframe3dd.frame3dd import write_frame3dd_file, read_lowest_mode, read_frame3dd_displacements, compute_mass
from pyframe3dd.util import magnitudes, close
import subprocess
import matplotlib.pyplot as plt
plt.style.use('bmh')
def plot_connections(nodes,beamsets):
#for debug only, this is slow!
import matplotlib as mpl
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
import matplotlib.pyplot as plt
fig = plt.figure()
cmap = plt.cm.get_cmap('Dark2', len(beamsets)+1)
ax = fig.gca(projection='3d')
for i,beamset in enumerate(beamsets):
for seg in beamset:
ax.plot(nodes[seg,0], nodes[seg,1], nodes[seg,2], c=cmap(i))
plt.show()
def get_rotation_from_nodes(nodes,axis,disps,targets):
base = asarray(axis[0]);
a = axis[1]-base;
a = a/magnitudes(a) #set up axis coordinates
x = nodes[targets]-base
d = x - dot(x, a)[...,None]*a
y = [dot(a,b) for a,b in zip(disps[targets,:3], cross(d,a))]
return arctan2(y,magnitudes(d)),magnitudes(d)
def run_frame3dd(args,nodes,global_args,beam_sets,constraints,loads):
write_frame3dd_file(nodes,global_args,beam_sets,constraints,loads)
cmd = ["frame3dd", "-i",global_args['frame3dd_filename']+'.csv']
if args.quiet: cmd.append("-q")
print ' '.join(cmd)
subprocess.call(cmd)
def clean_up_frame3dd(filename):
#Delete files generated by frame3dd
files = [filename+end for end in ["_out.csv",".csv.out",".csv.plt",".csv.if01",".csv"]]
subprocess.call(["rm"]+files)
def build(args):
#return nodes,rods as numpy arrays
dxy = args.attach_radius/sqrt(2)
nodes = array([[dxy,dxy,0],[-dxy,dxy,0],[-dxy,-dxy,0],[dxy,-dxy,0]])
solid_beams = array([ [0,1],[1,2],[2,3],[3,0],[0,2],[1,3] ])
z_os = array([0,0,.5*args.sep])
nodes = vstack(( nodes+z_os, nodes-z_os ))
solid_beams = vstack((solid_beams, solid_beams + 4))
solid_beams = vstack((solid_beams, array([
[0,4],[1,5],[2,6],[3,7],
[0,5],[1,6],[2,7],[3,4],
[0,7],[1,4],[2,5],[3,6] ])))
#sensor nodes
nodes = vstack((nodes, array([ [args.sensor_radius,0,0],[0,args.sensor_radius,0],[-args.sensor_radius,0,0],[0,-args.sensor_radius,0] ])))
solid_beams = vstack((solid_beams, array([ [0,8],[3,8],[0,9],[1,9],[1,10],[2,10],[2,11],[3,11] ]) ))
solid_beams = vstack((solid_beams, array([ [4,8],[7,8],[4,9],[5,9],[5,10],[6,10],[6,11],[7,11] ]) ))
if args.flexure_type == 'cyclic':
if args.chamfer > 0:
l = args.l; ch = args.chamfer
#chamfer the flexure
flexure_nodes = array([[0,l-ch,0],[-ch,l,0],[-l,l,0]]) + array([dxy,dxy,0])
flexure_nodes = vstack(( flexure_nodes, array([[l-ch,0,0],[l,ch,0],[l,l,0]]) + array([dxy,-dxy,0]) ))
#append reflection
flexure_nodes = vstack((flexure_nodes,array([[-n[0],-n[1],0] for n in flexure_nodes])))
flexure_beams = array([[0,12],[12,13],[13,14],[3,15],[15,16],[16,17],[2,18],[18,19],[19,20],[1,21],[21,22],[22,23]])
#append both plates
flexure_nodes = vstack(( flexure_nodes + z_os, flexure_nodes - z_os))
flexure_beams = vstack(( flexure_beams, array([[4,24],[24,25],[25,26],[7,27],[27,28],[28,29],[6,30],[30,31],[31,32],[5,33],[33,34],[34,35]]) ))
fixed_nodes = [14,17,20,23,26,29,32,35]
else:
flexure_nodes = args.l*array([[0,1,0],[-1,1,0]]) + array([dxy,dxy,0])
flexure_nodes = vstack(( flexure_nodes, args.l*array([[1,0,0],[1,1,0]]) + array([dxy,-dxy,0]) ))
#append reflection
flexure_nodes = vstack((flexure_nodes,array([[-n[0],-n[1],0] for n in flexure_nodes])))
flexure_beams = array([[0,12],[12,13],[3,14],[14,15],[2,16],[16,17],[1,18],[18,19]])
#append both plates
flexure_nodes = vstack(( flexure_nodes + z_os, flexure_nodes - z_os))
flexure_beams = vstack(( flexure_beams, array([[4,20],[20,21],[7,22],[22,23],[6,24],[24,25],[5,26],[26,27]]) ))
fixed_nodes = [13,15,17,19,21,23,25,27]
elif args.flexure_type == 'mirrored':
flexure_nodes = args.l*array([[0,1,0],[-1,1,0]]) + array([dxy,dxy,0])
flexure_nodes = vstack(( flexure_nodes, args.l*array([[1,0,0],[1,-1,0]]) + array([dxy,dxy,0]) ))
#append reflection
flexure_nodes = vstack((flexure_nodes,array([[-n[0],-n[1],0] for n in flexure_nodes])))
flexure_beams = array([[0,12],[12,13],[0,14],[14,15],[2,16],[16,17],[2,18],[18,19]])
#append both plates
flexure_nodes = vstack(( flexure_nodes + z_os, flexure_nodes - z_os))
flexure_beams = vstack(( flexure_beams, array([[4,20],[20,21],[4,22],[22,23],[6,24],[24,25],[6,26],[26,27]]) ))
fixed_nodes = [13,15,17,19,21,23,25,27]
nodes = vstack((nodes, flexure_nodes))
return nodes, flexure_beams, solid_beams, fixed_nodes
def run_simulation(args):
#set up simulation
nodes,beams,solid_beams,fixed_nodes = build(args)
global_args = {
'n_modes':args.n_modes,'length_scaling':args.length_scaling,'exagerration':10,
'zoom_scale':2.,'node_radius':zeros(shape(nodes)[0]),
'frame3dd_filename':args.base_filename+"_frame3dd"
}
clean_up_frame3dd(global_args['frame3dd_filename'])
beam_sets = [
(beams,{'E':args.E,'nu':args.nu,'rho':args.rho,'cross_section':'rectangular','d2':args.w,'d1':args.t,'roll':0.,'loads':[],'beam_divisions':args.bd,'prestresses':[]}),
(solid_beams,{'E':10*args.E,'nu':args.nu,'rho':args.rho,'cross_section':'rectangular','d1':.003,'d2':.003,'roll':0.,'loads':[],'beam_divisions':1,'prestresses':[]})
]
constraints = [{'node':node,'DOF':dof,'value':0} for dof in [0,1,2,3,4,5] for node in fixed_nodes]
#loaded_nodes = [0,5,10,15,20,21,22,23]
#sensor_nodes = [24,25,26,27]
loaded_nodes = range(8)
sensor_nodes = [8,9,10,11]
results = []
for force_dof in [0,1,2]:
loads = [{'node':n,'DOF':force_dof,'value':args.force/len(loaded_nodes)} for n in loaded_nodes]
run_frame3dd(args,nodes,global_args,beam_sets,constraints,loads)
disps = read_frame3dd_displacements(global_args['frame3dd_filename'])
force_disp = average(disps[loaded_nodes,force_dof])
#print "Degree of freedom: %d"%force_dof
#print "Force applied: %.1f N"%(args.force)
#print "Displacement at sensor: %.1f microns"%(force_disp*1e6)
results.append( {'dof':force_dof, 'force/torque':args.force, 'displacement':force_disp} )
#sys.exit(0)
#Tx, Ty
torque_force = args.torque/(.5*args.sep)/len(loaded_nodes) # F = torque / dist
for torque_dof in [0,1]:
loads = [{'node':n,'DOF':torque_dof,'value':torque_force if nodes[n][2]>0 else -torque_force} for n in loaded_nodes]
run_frame3dd(args,nodes,global_args,beam_sets,constraints,loads)
disps = read_frame3dd_displacements(global_args['frame3dd_filename'])
moving_sensor_nodes = [8,10] if torque_dof==0 else [9,11]
#print disps[sensor_nodes]
#axis = (array([0,0,0]), array([0,-1,0]) if torque_dof==0 else array([1,0,0]) )
#rots,ds = get_rotation_from_nodes(nodes,axis,disps/global_args['length_scaling'],loaded_nodes)
#print average(rots)
#print "Degree of freedom: %d"%torque_dof
#print "Torque applied: %.1f Nm"%(args.torque)
#print "Torque force: %.2f N"%torque_force
#print "Displacement at sensor: %.1f microns"%(sin(average(rots))*args.sensor_radius*1e6)
#print "Displacement at sensor: %.1f microns"%( average(abs(disps[moving_sensor_nodes,2]))*1e6 )
results.append( {'dof':torque_dof+3, 'force/torque':args.torque, 'displacement':average(abs(disps[moving_sensor_nodes,2]))} )
#Tz
torque_force = args.torque/args.attach_radius/len(loaded_nodes) # F = torque / dist
def node_to_force(n):
return array([-nodes[n,1],nodes[n,0],0]) / sqrt(nodes[n,0]**2 + nodes[n,1]**2)
loads = [{'node':n,'DOF':i,'value':torque_force*node_to_force(n)[i]} for n in loaded_nodes for i in [0,1]]
run_frame3dd(args,nodes,global_args,beam_sets,constraints,loads)
disps = read_frame3dd_displacements(global_args['frame3dd_filename'])
#axis = (array([0,0,0]), array([0,0,1]))
#rots,ds = get_rotation_from_nodes(nodes,axis,disps/global_args['length_scaling'],loaded_nodes)
#print average(rots)
#print "Degree of freedom: %d"%2
#print "Torque applied: %.1f Nm"%(args.torque)
#print "Torque force: %.2f N"%torque_force
#print "Displacement at sensor: %.1f microns"%(sin(average(rots))*args.sensor_radius*1e6)
#print "Displacement at sensor: %.1f microns"%( average(magnitudes(disps[sensor_nodes,:3]))*1e6 )
results.append( {'dof':5, 'force/torque':args.torque, 'displacement':average(magnitudes(disps[sensor_nodes,:3]))} )
#todo: plot displacements vs. design parameters
return results
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-M','--mode',choices=('simulate','graph', 'visualize'), required=True)
parser.add_argument('-flexure_type','--flexure_type',choices=('cyclic','mirrored'), required=True)
parser.add_argument('-Q','--quiet',action='store_true',help='Whether to suppress frame3dd output')
parser.add_argument("-f","--force", type=double, default=.1, help="force to apply (N)")
parser.add_argument("-torque","--torque", type=double, default=1., help="torque to apply (Nm)")
#parser.add_argument("-fr","--force_res", type=double, default=.01, help="Final resolution of force for search mode")
parser.add_argument("-w","--w", type=double, default=.0005, help="width of flexure (m)")
parser.add_argument("-t","--t", type=double, default=.0023, help="thickness of flexure material (m)")
parser.add_argument("-l","--l", type=double, default=.0068, help="length of flexure segment (m)")
parser.add_argument("-attach_radius","--attach_radius", type=double, default=.0043, help="distance from z axis to flexure attachment (m)")
parser.add_argument("-sep","--sep", type=double, default=.0185, help="flexure plate z separation (m)")
parser.add_argument("-sensor_radius","--sensor_radius", type=double, default=.012, help="distance from rotation axis to sensor (m)")
parser.add_argument("-chamfer","--chamfer", type=double, default=.001, help="chamfer length for flexure (m), zero for no chamfer")
parser.add_argument("-bd","--bd", type=int, default=1, help='how many divisions for each rod, useful in buckling analysis')
parser.add_argument("-E","--E", type=double, default=70e9, help="Young's Modulus of laminate")
parser.add_argument("-nu","--nu", type=double, default=.33, help="Poisson Ratio")
parser.add_argument("-base_filename","--base_filename", default='buckle', help="Base filename for segments and frame3dd")
parser.add_argument("-rho","--rho",type=double,default=2700.,help='density of beam material, kg/m^3')
parser.add_argument("-n_modes","--n_modes",type=int,default=0,help='number of dynamic modes to compute')
parser.add_argument("-ls","--length_scaling", type=double, default=1., help="Scale factor to keep numbers commesurate")
args = parser.parse_args()
#if args.mode=='search':
# forces,freqs,last_res = find_stability_threshold(args)
# print "Fundamental frequency: %.3f Hz"%(freqs[-1])
# print "Critical force: %.3f N"%(forces[-1])
# print "Critical stress: %.3f MPa"%(last_res['stress']/1e6)
if args.mode == 'graph':
ws = linspace(.000, .9*args.l, 10)
res = {}
for wi in ws:
#args.w = wi
args.chamfer = wi
res[wi] = run_simulation(args)
X = [1e6*res[wi][0]['displacement'] for wi in ws]
Y = [1e6*res[wi][1]['displacement'] for wi in ws]
Z = [1e6*res[wi][2]['displacement'] for wi in ws]
rX = [1e6*res[wi][3]['displacement'] for wi in ws]
rY = [1e6*res[wi][4]['displacement'] for wi in ws]
rZ = [1e6*res[wi][5]['displacement'] for wi in ws]
print ws,X,Y,Z
plt.plot( 1e3*ws, X, label='X' )
plt.plot( 1e3*ws, Y, label='Y' )
plt.plot( 1e3*ws, Z, label='Z' )
plt.plot( 1e3*ws, rX, label='rX' )
plt.plot( 1e3*ws, rY, label='rY' )
plt.plot( 1e3*ws, rZ, label='rZ' )
plt.ylabel('displacement at sensor (microns)')
plt.xlabel('chamfer width (mm)')
plt.xlim([1e3*ws[0],1e3*ws[-1]])
plt.legend(loc='upper right')
plt.show()
elif args.mode=='simulate':
res = run_simulation(args)
print res
#print "Fundamental frequency: %.3f Hz"%res['fundamental_frequency']
#print "Stress: %.3f MPa"%(res['stress']/1e6)
elif args.mode=='visualize':
nodes,rods,solid_beams,fixed_nodes = build(args)
plot_connections(nodes,[rods,solid_beams])
else:
assert(0) #should not be here
'''
def find_stability_threshold(args):
#out loop of simulations to determine the buckling load
lower = 0 #lower bound
upper = 10*args.force_res #initial upper bound before bracketing
bracketed=False
#actually not necessary, but fun to have the unloaded frequency
args.force = lower
res = run_simulation(args)
freqs = [res['fundamental_frequency']]
forces = [args.force]
i = 0
while not bracketed:
print lower,upper,bracketed,res['fundamental_frequency']
args.force = upper
res = run_simulation(args); i += 1
if res['fundamental_frequency']<0:
bracketed=True
else:
freqs.append(res['fundamental_frequency'])
forces.append(args.force)
lower = upper
upper = 2*upper
while (upper-lower > args.force_res):
print lower,upper,bracketed
args.force = .5*(upper+lower)
res = run_simulation(args); i += 1
if res['fundamental_frequency']>0:
freqs.append(res['fundamental_frequency'])
forces.append(args.force)
lower = .5*(upper+lower)
else:
upper = .5*(upper+lower)
return forces,freqs,res
'''